Ana P. Vivancos
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana P. Vivancos.
Molecular Microbiology | 2004
Ana P. Vivancos; Esther A. Castillo; Nic Jones; José Ayté; Elena Hidalgo
The transcription factor Pap1 and the MAP kinase Sty1 are key regulators of hydrogen peroxide‐induced responses in Schizosaccharomyces pombe. Pap1 can be activated quickly at low, but not high, hydrogen peroxide concentrations. The MAP kinase Sty1 has been reported to participate in Pap1 activation by the oxidant. Here, we provide biochemical and genetic evidence for the in vivo formation of a hydrogen peroxide‐induced disulphide bond in Pap1, which precedes the rapid and reversible nuclear accumulation of the transcription factor. We show that activation of the Sty1 cascade before the oxidative insult, or overexpression of the Sty1‐regulated genes ctt1 (encoding catalase) or gpx1 (encoding glutathione peroxidase), can accelerate Pap1 entry even at high doses of hydrogen peroxide. In fact, the lack of Sty1 impedes Pap1 nuclear localization, but only at high doses of the oxidant. We propose that, whereas low doses of hydrogen peroxide lead directly to Pap1 oxidation‐activation, high concentrations of the oxidant initially activate the Sty1 pathway, with the consequent increase in scavenging enzymes, which in turn helps to decompose the excess of hydrogen peroxide and achieve an appropriate concentration for the subsequent activation of Pap1. Our results also suggest that activation of Sty1 at high doses of hydrogen peroxide may also be required to trigger other antioxidant activities such as those reverting the overoxidation of cysteine residues at the Pap1 pathway.
Molecular Genetics and Genomics | 2006
Ana P. Vivancos; Mónica Jara; Alice Zuin; Miriam Sansó; Elena Hidalgo
Schizosaccharomyces pombe triggers different signalling pathways depending on the severity of the oxidative stress exerted, the main ones being the Pap1 and the Sty1 pathways. The Pap1 transcription factor is more sensitive to hydrogen peroxide (H2O2) than the MAP kinase Sty1 pathway, and is designed to induce adaptation, rather than survival, responses. The peroxiredoxin Tpx1 acts as a H2O2 sensor and the upstream activator of the Pap1 pathway. Therefore, sensitivity to H2O2 depends on this thioredoxin peroxidase. In order to achieve maximal activation of the MAP kinase pathway, the concentration of H2O2 needs to be at least fivefold higher than that to fully activate Pap1. Tpx1 is a H2O2 scavenger, thus its peroxidase activity is essential for aerobic growth. As described for other eukaryotic peroxiredoxins, high doses of H2O2 temporarily inactivate Tpx1 and delay Pap1 activation, whereas the Sty1 pathway remains fully functional under these conditions. As part of the Sty1-dependent transcriptional response, the expression of Srx1 is induced and this reductase re-activates the over-oxidised Tpx1. Therefore, the antioxidant pathways of the fission yeast are perfectly designed so that the transcriptional programs triggered by the different signalling pathways never overlap.
Genome Research | 2010
Ana P. Vivancos; Marc Güell; Juliane C. Dohm; Luis Serrano; Heinz Himmelbauer
Several studies support that antisense-mediated regulation may affect a large proportion of genes. Using the Illumina next-generation sequencing platform, we developed DSSS (direct strand specific sequencing), a strand-specific protocol for transcriptome sequencing. We tested DSSS with RNA from two samples, prokaryotic (Mycoplasma pneumoniae) as well as eukaryotic (Mus musculus), and obtained data containing strand-specific information, using single-read and paired-end sequencing. We validated our results by comparison with a strand-specific tiling array data set for strain M129 of the simple prokaryote M. pneumoniae, and by quantitative PCR (qPCR). The results of DSSS were very well supported by the results from tiling arrays and qPCR. Moreover, DSSS provided higher dynamic range and single-base resolution, thus enabling efficient antisense detection and the precise mapping of transcription start sites and untranslated regions. DSSS data for mouse confirmed strand specificity of the protocol and the general applicability of the approach to studying eukaryotic transcription. We propose DSSS as a simple and efficient strategy for strand-specific transcriptome sequencing and as a tool for genome annotation exploiting the increased read lengths that next-generation sequencing technology now is capable to deliver.
The EMBO Journal | 2010
Alice Zuin; Mercè Carmona; Isabel Morales-Ivorra; Natalia Gabrielli; Ana P. Vivancos; José Ayté; Elena Hidalgo
Either calorie restriction, loss‐of‐function of the nutrient‐dependent PKA or TOR/SCH9 pathways, or activation of stress defences improves longevity in different eukaryotes. However, the molecular links between glucose depletion, nutrient‐dependent pathways and stress responses are unknown. Here, we show that either calorie restriction or inactivation of nutrient‐dependent pathways induces lifespan extension in fission yeast, and that such effect is dependent on the activation of the stress‐dependent Sty1 mitogen‐activated protein (MAP) kinase. During transition to stationary phase in glucose‐limiting conditions, Sty1 becomes activated and triggers a transcriptional stress programme, whereas such activation does not occur under glucose‐rich conditions. Deletion of the genes coding for the SCH9‐homologue, Sck2 or the Pka1 kinases, or mutations leading to constitutive activation of the Sty1 stress pathway increase lifespan under glucose‐rich conditions, and importantly such beneficial effects depend ultimately on Sty1. Furthermore, cells lacking Pka1 display enhanced oxygen consumption and Sty1 activation under glucose‐rich conditions. We conclude that calorie restriction favours oxidative metabolism, reactive oxygen species production and Sty1 MAP kinase activation, and this stress pathway favours lifespan extension.
Molecular Systems Biology | 2015
Maria Lluch-Senar; Javier Delgado; Wei-Hua Chen; Verónica Lloréns-Rico; Francis J O'Reilly; Judith A. H. Wodke; E Besray Unal; Eva Yus; Sira Martínez; Robert J Nichols; Tony Ferrar; Ana P. Vivancos; Arne G. Schmeisky; Jörg Stülke; Vera van Noort; Anne-Claude Gavin; Peer Bork; Luis Serrano
Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome‐reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non‐coding RNAs (ncRNAs) non‐overlapping with essential genes is 5% higher than of non‐transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non‐coding regions, thus changing the focus when aiming to define the minimal essential genome.
Journal of Biological Chemistry | 2005
Alice Zuin; Ana P. Vivancos; Miriam Sansó; Yoshifumi Takatsume; José Ayté; Yoshiharu Inoue; Elena Hidalgo
Methylglyoxal, a toxic metabolite synthesized in vivo during glycolysis, inhibits cell growth. One of the mechanisms protecting eukaryotic cells against its toxicity is the glyoxalase system, composed of glyoxalase I and II (glo1 and glo2), which converts methylglyoxal into d-lactic acid in the presence of glutathione. Here we have shown that the two principal oxidative stress response pathways of Schizosaccharomyces pombe, Sty1 and Pap1, are involved in the response to methylglyoxal toxicity. The mitogen-activated protein kinase Sty1 is phosphorylated and accumulates in the nucleus following methylglyoxal treatment. Moreover, glo2 expression is induced by methylglyoxal and environmental stresses in a Sty1-dependent manner. The transcription factor Pap1 also accumulates in the nucleus, activating the expression of its target genes following methylglyoxal treatment. Our studies showed that the C-terminal cysteine-rich domain of Pap1 is sufficient for methylglyoxal sensing. Furthermore, the redox status of Pap1 is not changed by methylglyoxal. We propose that methylglyoxal treatment triggers Pap1 and Sty1 nuclear accumulation, and we describe the molecular basis of such activation mechanisms. In addition, we discuss the potential physiological significance of these responses to a natural toxic metabolite.
BMC Genomics | 2013
Franc Llorens; Manuela Hummel; Lorena Pantano; Xavier Pastor; Ana P. Vivancos; Ester Castillo; Heidi Mattlin; Anna Ferrer; Matthew Ingham; Marc Noguera; Robert Kofler; Juliane C. Dohm; Raquel Pluvinet; Mònica Bayés; Heinz Himmelbauer; José Antonio del Río; Eulàlia Martí; Lauro Sumoy
BackgroundEpidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression.ResultsIn this study, we have used an integrative high content analysis approach to identify the specific miRNAs implicated in EGF signaling in HeLa cells as potential mediators of cancer mediated functions. We have used microarray and deep-sequencing technologies in order to obtain a global view of the EGF miRNA transcriptome with a robust experimental cross-validation. By applying a procedure based on Rankprod tests, we have delimited a solid set of EGF-regulated miRNAs. After validating regulated miRNAs by reverse transcription quantitative PCR, we have derived protein networks and biological functions from the predicted targets of the regulated miRNAs to gain insight into the potential role of miRNAs in EGF-treated cells. In addition, we have analyzed sequence heterogeneity due to editing relative to the reference sequence (isomiRs) among regulated miRNAs.ConclusionsWe propose that the use of global genomic miRNA cross-validation derived from high throughput technologies can be used to generate more reliable datasets inferring more robust networks of co-regulated predicted miRNA target genes.
Molecular Systems Biology | 2012
Eva Yus; Marc Güell; Ana P. Vivancos; Wei-Hua Chen; Maria Lluch-Senar; Javier Delgado; Anne-Claude Gavin; Peer Bork; Luis Serrano
Here, we report the genome‐wide identification of small RNAs associated with transcription start sites (TSSs), termed tssRNAs, in Mycoplasma pneumoniae. tssRNAs were also found to be present in a different bacterial phyla, Escherichia coli. Similar to the recently identified promoter‐associated tiny RNAs (tiRNAs) in eukaryotes, tssRNAs are associated with active promoters. Evidence suggests that these tssRNAs are distinct from previously described abortive transcription RNAs. ssRNAs have an average size of 45 bases and map exactly to the beginning of cognate full‐length transcripts and to cryptic TSSs. Expression of bacterial tssRNAs requires factors other than the standard RNA polymerase holoenzyme. We have found that the RNA polymerase is halted at tssRNA positions in vivo, which may indicate that a pausing mechanism exists to prevent transcription in the absence of genes. These results suggest that small RNAs associated with TSSs could be a universal feature of bacterial transcription.
Journal of Biological Chemistry | 2003
Esther A. Castillo; Ana P. Vivancos; Nic Jones; José Ayté; Elena Hidalgo
In Schizosaccharomyces pombe, the transcription factor Pap1, and the mitogen-activated protein kinase Sty1 are excluded from the nucleus in a Crm1-dependent manner under non-stressed conditions. Upon oxidant treatment, both Sty1 and Pap1 concentrate into the nucleus, due to an enhanced import or an impaired export. Hba1, a protein that when overexpressed confers brefeldin A resistance, contains a Ran binding domain. The purpose of this project was to understand at the molecular level the role of Hba1 in the S. pombe oxidative stress response. Fluorescent and confocal microscopy studies demonstrate that Hba1 is located at the nucleoplasm and not at the nuclear envelope. We also demonstrate that either multiple copies or deletion of the hba1 gene induces nuclear accumulation of Pap1 and Sty1. We propose that Hba1 assists Crm1 to export some nuclear export signal-containing proteins. Pap1 nuclear accumulation is sufficient for constitutive activation of its specific antioxidant response. On the contrary, constitutive nuclear localization of Sty1 in the Δhba1 strain does not trigger the Sty1-specific, Atf1-dependent antioxidant response in the absence of stress. We conclude that the increased multidrug resistance of strains lacking or overexpressing Hba1 is due to the accumulation of Pap1 in the nucleus under non-stressed conditions.
BMC Genomics | 2011
Franc Llorens; Manuela Hummel; Xavier Pastor; Anna Ferrer; Raquel Pluvinet; Ana P. Vivancos; Ester Castillo; Susana Iraola; Ana M Mosquera; Eva González; Juanjo Lozano; Matthew Ingham; Juliane C. Dohm; Marc Noguera; Robert Kofler; José Antonio del Río; Mònica Bayés; Heinz Himmelbauer; Lauro Sumoy
BackgroundEpidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer.ResultsBy applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions.ConclusionsWe propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.