Ana Paula Moreira
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Paula Moreira.
PLOS ONE | 2010
Lynne Murray; Rogério Silva Rosada; Ana Paula Moreira; Amrita Joshi; Michael S. Kramer; David P. Hesson; Rochelle L. Argentieri; Susan K. Mathai; Mridu Gulati; Erica L. Herzog; Cory M. Hogaboam
Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses.
Journal of Immunology | 2006
Karen A. Cavassani; Ana Paula Campanelli; Ana Paula Moreira; Jaqueline O. Vancim; Lucia Helena Vitali; Rui Celso Martins Mamede; Roberto Martinez; João S. Silva
The long-term persistence of pathogens in a host is a hallmark of certain infectious diseases, including schistosomiasis, leishmaniasis, and paracoccidioidomycosis (PCM). Natural regulatory T (Treg) cells are involved in control of the immune responses, including response to pathogens. Because CTLA-4 is constitutively expressed in Treg cells and it acts as a negative regulator of T cell activation in patients with PCM, here we investigated the involvement of Treg cells in the control of systemic and local immune response in patients with PCM. We found that the leukocyte subsets were similar in patients and controls, except for CD11c+CD1a+ cells. However, a higher frequency of CD4+CD25+ T cells expressing CTLA-4, glucorticoid-inducible TNFR, membrane-bound TGF-β, and forkhead-box 3 were observed in PBMC of patients. In accordance, these cells exhibited stronger suppressive activity when compared with those from controls (94.0 vs 67.5% of inhibition of allogeneic T cell proliferation). In addition, the data showed that CD4+CD25+ T cells expressing CTLA-4+, glucocorticoid-inducible TNFR positive, CD103+, CD45RO+, membrane-bound TGF-β, forkhead-box 3 positive, and the chemokines receptors CCR4 and CCR5 accumulate in the Paracoccidioides brasiliensis-induced lesions. Indeed, the secreted CCL17 and CCL22, both associated with the migration of Treg cells to peripheral tissues, were also detected in the biopsies. Moreover, the CD4+CD25+ T cell derived from lesions, most of them TGF-β+, also exhibited functional activity in vitro. Altogether, these data provide the first evidence that Treg cells play a role in controlling local and systemic immune response in patients with a fungal-induced granulomatous disease advancing our understanding about the immune regulation in human chronic diseases.
Journal of Leukocyte Biology | 2008
Cristina R. Cardoso; Gustavo Pompermaier Garlet; Ana Paula Moreira; Walter Martins Júnior; Marcos A. Rossi; João Santana da Silva
Periodontitis is an infectious disease, where putative periodontopathogens trigger chronic inflammatory and immune responses against periodontal structures, in which an unbalanced host response is also determinant to the disease outcome. It is reasonable to assume that patient susceptibility to periodontal tissue destruction could be determined by the balance between the response against periodontopathogens and regulatory mechanisms of these events mediated by suppressive T cells. In the present study, we identified and characterized natural regulatory T cells (Tregs) in the inflammatory infiltrate of human chronic periodontitis (CP) with emphasis on phenotypic analyses that were carried out to address the participation of Tregs in CP. Results showed that patients with CP presented increased frequency of T lymphocytes and CD4+CD25+ T cells in the inflammatory infiltrate of gingival tissues. These cells exhibited the phenotypic markers of Tregs such as forkhead box p3 (Foxp3), CTLA‐4, glucocorticoid‐inducible TNFR, CD103, and CD45RO and seemed to be attracted to the inflammation site by the chemokines CCL17 and CCL22, as their expression and its receptor CCR4 were increased in CP patients. Moreover, besides the increased detection of Foxp3 mRNA, diseased tissues presented high expression of the regulatory cytokines IL‐10 and TGF‐β. In addition, the inflammatory infiltrate in CP biopsies was composed of CD25+Foxp3+ and CD25+TGF‐β+ cells, thus corroborating the hypothesis of the involvement of Tregs in the pathogenesis of CP. Finally, these results indicate that Tregs are found in the chronic lesions and must be involved in the modulation of local immune response in CP patients.
Journal of Interferon and Cytokine Research | 2011
Ana Paula Moreira; Cory M. Hogaboam
Macrophages exert prominent effects in the defense of the respiratory tract from airborne pathogens. These cells are specialized to recognize, phagocytose, and destroy these infectious agents and then promote appropriate tissue repair after successful pathogen clearance. For reasons that are not presently clear, macrophages appear to be inappropriately activated during asthma responses. Evidence stems from the appearance of either classically (or M1) and alternatively activated (or M2) cells in the alveolar compartment of asthmatic lung. Macrophages localized in the interstitial area of the lung appear to be less prone to polarization toward either the M1 or M2 phenotype as these cells predominately express interleukin-10 and exhibit immunoregulatory properties. Effective treatment of clinical asthma, regardless of severity, might depend on restoring an appropriate balance between M1, M2, and immunoregulatory macrophages in the lung.
Microbes and Infection | 2008
Flávia S. Mariano; Fredy R. S. Gutierrez; Wander R. Pavanelli; Cristiane Maria Milanezi; Karen A. Cavassani; Ana Paula Moreira; Beatriz Rossetti Ferreira; Fernando Q. Cunha; Cristina R. Cardoso; João S. Silva
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4+CD25+ T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4+CD25+GITR+Foxp3+ T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4+, CD8+, and CCR5+ leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection.
Journal of Immunology | 2008
Ana Paula Moreira; Karen A. Cavassani; Fabrine S. M. Tristão; Ana Paula Campanelli; Roberto Martinez; Marcos A. Rossi; João S. Silva
Paracoccidioidomycosis, a debilitating pulmonary mycosis, is caused by the dimorphic fungus Paracoccidioides brasiliensis. The infection results in the formation of granulomas containing viable yeast cells that are the fungal sources for disease reactivation. Because CD4+CD25+ regulatory T cells (Tregs) are in the lesions of patients with paracoccidioidomycosis, the migration of Treg cells is dependent on the axis chemokine-chemokine receptors, and CCR5 ligands are produced in P. brasiliensis-induced lesions, we investigated the role of CCR5 in the control of the infection. The results showed that CCR5−/− mice are more efficient in controlling fungal growth and dissemination and exhibited smaller granulomas than wild-type (WT) mice. In the absence of CCR5, the percentage of CD4+CD25+ T cells expressing Foxp3, glucocorticoid-induced TNFR (GITR), CD103, CD45low, and CTLA-4 in the granulomas was significantly decreased. Interestingly, P. brasiliensis infection resulted in an absence of T cell proliferation in response to Con A in WT but not CCR5−/− mice that was abrogated by anti-CTLA-4 mAb and anti-GITR mAb. Moreover, the adoptive transfer of CD4+CD25+ but not CD4+CD25− T cells from infected WT to infected CCR5−/− mice resulted in a significant increase in fungal load. Overall, CCR5 is a key receptor for the migration of Treg cells to the site of P. brasiliensis infection, leading to down-modulation of effector immune response and the long-term presence of the fungus in the granulomas. Thus, a tight control of Treg cell migration to the granulomatous lesions could be an important mechanism for avoiding exacerbation and reactivation of the disease.
Blood | 2010
Karen A. Cavassani; William F. Carson; Ana Paula Moreira; Haitao Wen; Matthew Schaller; Dennis M. Lindell; Yali Dou; Nicholas W. Lukacs; Venkateshwar G. Keshamouni; Cory M. Hogaboam; Steven L. Kunkel
One of the more insidious outcomes of patients who survive severe sepsis is profound immunosuppression. In this study, we addressed the hypothesis that post septic immune defects were due, in part, to the presence and/or expansion of regulatory T cells (Tregs). After recovery from severe sepsis, mice exhibited significantly higher numbers of Tregs, which exerted greater in vitro suppressive activity compared with controls. The expansion of Tregs was not limited to CD25(+) cells, because Foxp3 expression was also detected in CD25(-) cells from post septic mice. This latter group exhibited a significant increase of chromatin remodeling at the Foxp3 promoter, because a marked increase in acetylation at H3K9 was associated with an increase in Foxp3 transcription. Post septic splenic dendritic cells promoted Treg conversion in vitro. Using a solid tumor model to explore the function of Tregs in an in vivo setting, we found post septic mice showed an increase in tumor growth compared with sham-treated mice with a syngeneic tumor model. This observation could mechanistically be related to the ability of post septic Tregs to impair the antitumor response mediated by CD8(+) T cells. Together, these data show that the post septic immune system obstructs tumor immunosurveillance, in part, by augmented Treg expansion and function.
Journal of Clinical Investigation | 2011
Ana Paula Moreira; Karen A. Cavassani; Ugur B. Ismailoglu; Rikki Hullinger; Michael P. Dunleavy; Darryl A. Knight; Steven L. Kunkel; Satoshi Uematsu; Shizuo Akira; Cory M. Hogaboam
TLRs are a family of receptors that mediate immune system pathogen recognition. In the respiratory system, TLR activation has both beneficial and deleterious effects in asthma. For example, clinical data indicate that TLR6 activation exerts protective effects in asthma. Here, we explored the mechanism or mechanisms through which TLR6 mediates this effect using mouse models of Aspergillus fumigatus-induced and house dust mite antigen-induced (HDM antigen-induced) chronic asthma. Tlr6-/- mice with fungal- or HDM antigen-induced asthma exhibited substantially increased airway hyperresponsiveness, inflammation, and remodeling compared with WT asthmatic groups. Surprisingly, whole-lung levels of IL-23 and IL-17 were markedly lower in Tlr6-/- versus WT asthmatic mice. Tlr6-/- DCs generated less IL-23 upon activation with lipopolysaccharide, zymosan, or curdlan. Impaired IL-23 generation in Tlr6-/- mice also corresponded with lower levels of expression of the pathogen-recognition receptor dectin-1 and expansion of Th17 cells both in vivo and in vitro. Exogenous IL-23 treatment of asthmatic Tlr6-/- mice restored IL-17A production and substantially reduced airway hyperresponsiveness, inflammation, and lung fungal burden compared with that in untreated asthmatic Tlr6-/- mice. Together, our data demonstrate that TLR6 activation is critical for IL-23 production and Th17 responses, which both regulate the allergic inflammatory response in chronic fungal-induced asthma. Thus, therapeutics targeting TLR6 activity might prove efficacious in the treatment of clinical asthma.
Mycopathologia | 2008
Ana Paula Moreira; Luciane Alarcão Dias-Melicio; Maria Terezinha Serrão Peraçoli; Sueli Aparecida Calvi; Angela Maria Victoriano de Campos Soares
Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-γ or TNF-α, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-γ and TNF-α activation were associated with higher levels of H2O2 and NO when compared to nonactivation. Treatment with catalase (CAT), a H2O2 scavenger, and N(G)-monomethyl-l-arginine (l-NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and l-arginine—nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.
Cellular Immunology | 2010
Ana Paula Moreira; Luciane Alarcão Dias-Melicio; Angela Maria Victoriano de Campos Soares
Paracoccidioidomycosis is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis (P. brasiliensis). Most often, this mycosis runs as a chronic progressive course affecting preferentially the lungs. In vitro fungicidal activity against a high virulent strain of P. brasiliensis by murine peritoneal macrophages preactivated with IFN-gamma or TNF-alpha is high and correlates with increased NO and H2O2 production. Within this context, the purpose of this work was to study the role of suppressor cytokines, such as IL-10 and TGF-beta, in this process. Incubation of either IFN-gamma or TNF-alpha with IL-10 inhibits fungicidal activity of these cells. However, TGF-beta had no effect on fungicidal activity of IFN-gamma or TNF-alpha-activated macrophages. The suppression of fungicidal activity by IL-10 correlated with the inhibition of NO and H2O2 production supporting the involvement of these metabolites in P. brasiliensis killing. These results suggest that IL-10 production in vivo could represent an evasion mechanism of the fungus to avoid host immune response.