Ana Paula Zaderenko
Pablo de Olavide University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Paula Zaderenko.
Nanomedicine: Nanotechnology, Biology and Medicine | 2008
Paula M. Castillo; Juan Luis Herrera; Rafael Fernandez-Montesinos; Carlos Caro; Ana Paula Zaderenko; José A. Mejías; David Pozo
AIMS Capped silver nanoparticles that can be coupled to a variety of molecules and biomolecules are of great interest owing to their potential applications in biomedicine. However, there are no data about their toxicity or functional effects on a key innate immune response, such as IL-6 secretion, after the engagement of the main group of pathogen-associated molecular patterns receptors, that is, the Toll-like receptors (TLRs). MATERIALS & METHODS N-(2-mercaptopropionyl)glycine (tiopronin)-capped silver (Ag@tiopronin) nanoparticles of a narrow sized distribution ( approximately 5 nm) were synthesized and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman, (1)H-NMR and total correlation spectroscopy. Cytotoxicity was determined by lactate deshidrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium assays in Raw 264.7 macrophages. IL-6 was measured by ELISA. RESULTS & DISCUSSION Ag@tiopronin nanoparticles have a narrow size distribution ( approximately 5 nm), high solubility and stability in aqueous environment with no cytotoxicity in terms of mitochondrial function or plasma-membrane integrity at concentrations as high as 200 microg/10(6) cells. Ag@tiopronin nanoparticles were not proinflammatory agents, but remarkably they specifically impaired the IL-6 secretion mediated by TLR2, TLR2/6, TLR3 or TLR9 stimulation in co-treatment experiments. However, in pretreatment experiments, nanoparticles enhanced the susceptibility of macrophages to inflammatory stimulation mediated by TLR2/1 and TLR2/6 specific ligands while severely impairing the IL-6 secretion activated by the TLR3 or TLR9 ligands. CONCLUSIONS Contrary to what is found for bare silver nanoparticles, Ag@tiopronin nanoparticles are noncytotoxic to macrophages. Ag@tiopronin nanoparticles showed differential effects on TLR signaling of a high degree of specificity, without proinflammatory effects by themselves. These effects have to be borne in mind when using bioconjugates of Ag@tiopronin nanoparticles for future medical applications.
Scientific Reports | 2015
Mario de la Mata; David Cotán; Manuel Oropesa-Ávila; Juan Garrido-Maraver; Mario D. Cordero; Marina Villanueva Paz; Ana Delgado Pavón; Elizabet Alcocer-Gómez; Isabel de Lavera; Patricia Ybot-Gonzalez; Ana Paula Zaderenko; Carmen Ortiz Mellet; José M. García Fernández; José A. Sánchez-Alcázar
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD.
Archive | 2010
Carlos Caro; Paula M. Castillo; Rebecca Klippstein; David Pozo; Ana Paula Zaderenko
Although silver exhibits many advantages over gold, such as higher extinction coefficients, sharper extinction bands, higher ratio of scattering to extinction, and extremely high field enhancements, it has been employed far less in the development of sensors, with the exception of sensors based on surface enhanced spectroscopies. The reason for this is the lower chemical stability of silver nanoparticles when compared to gold. Nevertheless, recent developments include means of protecting efficiently silver nanoparticles that offer far improved chemical stabilities. As a consequence, silver nanoparticles are rapidly gaining in popularity and several research groups have begun to explore alternative strategies for the development of optical sensors and imaging labels based on the extraordinary optical properties of these metal nanoparticles.
Nanomedicine: Nanotechnology, Biology and Medicine | 2009
Rafael Fernandez-Montesinos; Paula M. Castillo; Rebecca Klippstein; Elena Gonzalez-Rey; José A. Mejías; Ana Paula Zaderenko; David Pozo
UNLABELLED We characterized a method to conjugate functional silver nanoparticles with vasoactive intestinal peptide (VIP), which could be used as a working model for further tailor-made applications based on VIP surface functionality. Despite sustained interest in the therapeutic applications of VIP, and the fact that its drugability could be largely improved by the attachament to functionalized metal nanoparticles, no methods have been described so far to obtain them. MATERIALS & METHODS VIP was conjugated to tiopronin-capped silver nanoparticles of a narrow size distribution, by means of proper linkers, to obtain VIP functionalized silver nanoparticles with two different VIP orientations (Ag-tiopronin-PEG-succinic-[His]VIP and Ag-tiopronin-PEG-VIP[His]). VIP intermediate nanoparticles were characterized by transmission-electron microscopy and Fourier transform infrared spectroscopy. VIP functionalized silver nanoparticles cytotoxicity was determined by lactate dehydrogenase release from mixed glial cultures prepared from cerebral cortices of 1-3 days-old C57/Bl mice. Cells were used for lipopolysaccharide stimulation at day 18-22 of culture. RESULTS Two different types of VIP-functionalized silver nanoparticles were obtained; both expose the C-terminal part of the neuropeptide, but in the first type VIP is attached to silver nanoparticle through its free amine terminus (Ag-tiopronin-PEG-succinic-[His]VIP), while in the second type, VIP N-terminus remains free (Ag-tiopronin-PEG-VIP[His]). VIP-functionalized silver nanoparticles did not compromise cellular viability and inhibited microglia-induced stimulation under inflammatory conditions. CONCLUSION The chemical synthesis procedure developed to obtain VIP-functionalized silver nanoparticles rendered functional products, in terms of biological activity. The two alternative orientations designed, reduced the constraints for chemical synthesis that depends on the nanosurface to be functionalized. Our study provides, for the first time, a proof of principle to enhance the therapeutic potential of VIP with the valuable properties of metal nanoparticles for imaging, targeting and drug delivery.
Archive | 2010
Rebecca Klippstein; Rafael Fernandez-Montesinos; Paula M. Castillo; Ana Paula Zaderenko; David Pozo
Our immune system constantly interacts with our internal environment, protects us from our external environment and provides the inherent knowledge to sense the difference between friend and foe with important implications in human health and disease (Pozo, 2008). For these reasons, it is important to identify functional alteration of key immune responses as the number of silver nano-enabled products grows while the current data strongly suggest that other related nanomaterials, such as polymer nanoparticles, fullerenes, dendrimers and gold nanoparticles, interact with the immune system.
Cell Death and Disease | 2013
Manuel Oropesa-Ávila; Alejandro Fernández-Vega; M de la Mata; Juan Garrido Maraver; Mario D. Cordero; David Cotán; M. De Miguel; Carmen Calero; Marina Villanueva Paz; Ana Delgado Pavón; M. Sánchez; Ana Paula Zaderenko; Patricia Ybot-Gonzalez; José A. Sánchez-Alcázar
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Genes & Cancer | 2016
Marina Villanueva-Paz; Mario D. Cordero; Ana Delgado Pavón; Beatriz Castejón Vega; David Cotán; Mario de la Mata; Manuel Oropesa-Ávila; Elizabet Alcocer-Gómez; Isabel de Lavera; Juan Garrido-Maraver; José P. Carrascosa; Ana Paula Zaderenko; Jordi Muntané; Manuel de Miguel; José A. Sánchez-Alcázar
Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.
Apoptosis | 2014
Manuel Oropesa-Ávila; Alejandro Fernández-Vega; Mario de la Mata; Juan Garrido-Maraver; David Cotán; Marina Villanueva Paz; Ana Delgado Pavón; Mario D. Cordero; Elizabet Alcocer-Gómez; Isabel de Lavera; Rafael Lema; Ana Paula Zaderenko; José A. Sánchez-Alcázar
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.
RSC Advances | 2016
J. R. Aguilera; V. Venegas; J. M. Oliva; M. J. Sayagués; M. De Miguel; José A. Sánchez-Alcázar; M. Arévalo-Rodríguez; Ana Paula Zaderenko
Tannic acid (TA) has multiple effects against cancer, being especially promising in those types that overexpress the epidermal growth factor receptor (EGFR), as TA modulates its activation and downstream signaling pathways, triggering apoptosis. Nonetheless, despite the important role of this receptor in the pathogenesis and progression of a wide variety of tumors, no TA systems targeted to this receptor have been described yet. In this work, we synthesize, characterize by physico-chemical techniques and study the cytotoxic effect and cell uptake of TA nanoparticles targeted to EGFR in both tumoral and normal human skin cells. Our nanoparticles exhibited an extremely high entrapment efficiency, and were only toxic for the tumoral cells. The uptake assay demonstrated that nanoparticles are able to enter the cells through a receptor-mediated mechanism. Furthermore, we have included fluorescent markers in these nanoparticles to combine imaging and therapeutic applications, thus building effectively a multifunctional tool for biomedicine.
Cell Death and Disease | 2014
Manuel Oropesa-Ávila; Y Andrade-Talavera; Juan Garrido-Maraver; Mario D. Cordero; M de la Mata; David Cotán; Marina Villanueva Paz; Ana Delgado Pavón; Elizabet Alcocer-Gómez; I de Lavera; R Lema; Ana Paula Zaderenko; A Rodríguez-Moreno; José A. Sánchez-Alcázar
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.