Ana Pombo
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Pombo.
Nature Cell Biology | 2007
Julie K. Stock; Sara Giadrossi; Miguel Casanova; Emily Brookes; Miguel Vidal; Haruhiko Koseki; Neil Brockdorff; Amanda G. Fisher; Ana Pombo
Changes in phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAP) are associated with transcription initiation, elongation and termination. Sites of active transcription are generally characterized by hyperphosphorylated RNAP, particularly at Ser 2 residues, whereas inactive or poised genes may lack RNAP or may bind Ser 5-phosphorylated RNAP at promoter proximal regions. Recent studies have demonstrated that silent developmental regulator genes have an unusual histone modification profile in ES cells, being simultaneously marked with Polycomb repressor-mediated histone H3K27 methylation, and marks normally associated with gene activity. Contrary to the prevailing view, we show here that this important subset of developmental regulator genes, termed bivalent genes, assemble RNAP complexes phosphorylated on Ser 5 and are transcribed at low levels. We provide evidence that this poised RNAP configuration is enforced by Polycomb Repressor Complex (PRC)-mediated ubiquitination of H2A, as conditional deletion of Ring1A and Ring1B leads to the sequential loss of ubiquitination of H2A, release of poised RNAP, and subsequent gene de-repression. These observations provide an insight into the molecular mechanisms that allow ES cells to self-renew and yet retain the ability to generate multiple lineage outcomes.
The EMBO Journal | 1999
Ana Pombo; Dean A. Jackson; Michael Hollinshead; Zhengxin Wang; Robert G. Roeder; Peter R. Cook
Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved ‘physiological’ buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br‐UTP, before the resulting Br‐RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that ∼10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only ∼2000 sites (diameter ∼40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or ‘factories’, suggesting that different regions of the nucleus specialize in the transcription of different types of gene.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mariano Barbieri; Mita Chotalia; James Fraser; Liron-Mark Lavitas; Josée Dostie; Ana Pombo; Mario Nicodemi
Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the “strings and binders switch” model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed “fractal–globule” model, but only as one of many possible transient conformations.
Cell Stem Cell | 2012
Emily Brookes; Inês de Santiago; Daniel Hebenstreit; Kelly J. Morris; Tom Carroll; Sheila Q. Xie; Julie K. Stock; Martin Heidemann; Dirk Eick; Naohito Nozaki; Hiroshi Kimura; Jiannis Ragoussis; Sarah A. Teichmann; Ana Pombo
Summary Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p+S7p−S2p−) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p+S7p+S2p+); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.
Nature Reviews Molecular Cell Biology | 2015
Ana Pombo; Niall Dillon
The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus.
The FASEB Journal | 2000
Dean A. Jackson; Ana Pombo; Francisco J. Iborra
The control of RNA synthesis from protein‐coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega‐complex—the RNA polymerase II ho‐loenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.—Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J. 14, 242–254 (2000)
The EMBO Journal | 1994
Ana Pombo; J Ferreira; E Bridge; Maria Carmo-Fonseca
We have visualized the intranuclear topography of adenovirus replication and transcription in infected HeLa cells. The results show that viral DNA replication occurs in multiple foci that are highly organized in the nucleoplasm. Pulse‐chase experiments indicate that newly synthesized viral double‐stranded DNA molecules are displaced from the replication foci and spread throughout the nucleoplasm, while the single‐stranded DNA replication intermediates accumulate in adjacent sites. Double‐labelling experiments and confocal microscopy show that replication occurs in foci localized at the periphery of the sites where single‐stranded DNA accumulates. The simultaneous visualization of viral replication and transcription reveals that the sites of transcription are predominantly separated from the sites of replication. Transcription is detected adjacent to the replication foci and extends around the sites of single‐stranded DNA accumulation. These data indicate that newly synthesized double‐stranded DNA molecules are displaced from the replication foci and spread in the surrounding nucleoplasm, where they are used as templates for transcription. Splicing snRNPs are shown to co‐localize with the sites of transcription and to be excluded from the sites of replication. This provides evidence that splicing of viral RNAs occurs co‐transcriptionally and that the sites of viral DNA replication are spatially distinct from the sites of RNA transcription and processing.
EMBO Reports | 2005
Cheok-Man Chow; Andrew Georgiou; Henrietta Szutorisz; Alexandra Maia e Silva; Ana Pombo; Isabel Barahona; Elise Dargelos; Claudia Canzonetta; Niall Dillon
Variant histone H3.3 is incorporated into nucleosomes by a mechanism that does not require DNA replication and has also been implicated as a potential mediator of epigenetic memory of active transcriptional states. In this study, we have used chromatin immunoprecipitation analysis to show that H3.3 is found mainly at the promoters of transcriptionally active genes. We also show that H3.3 combines with H3 acetylation and K4 methylation to form a stable mark that persists during mitosis. Our results suggest that H3.3 is deposited principally through the action of chromatin‐remodelling complexes associated with transcriptional initiation, with deposition mediated by RNA polymerase II elongation having only a minor role.
The EMBO Journal | 1998
Ana Pombo; Paula Cuello; Wouter Schul; Jong Bok Yoon; Robert G. Roeder; Peter R. Cook; Shona Murphy
PTF (PSE‐binding transcription factor) activates transcription of snRNA and related genes. We investigated its distribution in HeLa nuclei by immunofluorescence, and found it spread throughout the nucleoplasm in small foci. In some cells, PTF is also concentrated in one, or very few, discrete regions (diameter ∼1.3 μm) that appear during G1 phase and disappear in S phase. Oct1, a transcription factor that interacts with PTF, is also enriched in these domains; RNA polymerase II, TBP and Sp1 are also present. Each domain typically contains 2 or 3 transcription ‘factories’ where Br‐UTP is incorporated into nascent transcripts. Accordingly, we have christened this region the Oct1/PTF/transcription (OPT) domain. It colocalizes with some, but not all, PIKA domains. It is distinct from other nuclear domains, including coiled bodies, gemini bodies, PML bodies and the perinucleolar compartment. A small region on chromosome 6 (band 6p21) containing only ∼30 Mbp DNA, and chromosomes 6 and 7, associate with the domain significantly more than other chromosomes. The domains may act like nucleoli to bring particular genes on specific chromosomes together to a region where the appropriate transcription and processing factors are concentrated, thereby facilitating the expression of those genes.
Nature | 2016
Martin Franke; Daniel M. Ibrahim; Guillaume Andrey; Wibke Schwarzer; Verena Heinrich; Robert Schöpflin; Katerina Kraft; Rieke Kempfer; Ivana Jerković; Wing Lee Chan; Malte Spielmann; Bernd Timmermann; Lars Wittler; Ingo Kurth; Paola Cambiaso; Orsetta Zuffardi; Gunnar Houge; Lindsay Lambie; Francesco Brancati; Ana Pombo; Martin Vingron; François Spitz; Stefan Mundlos
Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.