Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana R. Nunes is active.

Publication


Featured researches published by Ana R. Nunes.


Journal of Applied Physiology | 2012

Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii

Raul Chavez-Valdez; Ariel Mason; Ana R. Nunes; Frances J. Northington; Clarke G. Tankersley; Rajni Ahlawat; Sheree M. Johnson; Estelle B. Gauda

Synaptic activity can modify expression of neurotrophins, which influence the development of neuronal circuits. In the newborn rat, early hyperoxia silences the synaptic activity and input from the carotid body, impairing the development and function of chemoreceptors. The purpose of this study was to determine whether early hyperoxic exposure, sufficient to induce hypoplasia of the carotid body and decrease the number of chemoafferents, would also modify neurotrophin expression within the nucleus tractus solitarii (nTS). Rat pups were exposed to hyperoxia (fraction of inspired oxygen 0.60) or normoxia until 7 or 14 days of postnatal development (PND). In the carotid body, hyperoxia decreased brain-derived neurotrophic factor (BDNF) protein expression by 93% (P = 0.04) after a 7-day exposure, followed by a decrease in retrogradely labeled chemoafferents by 55% (P = 0.004) within the petrosal ganglion at 14 days. Return to normoxia for 1 wk after a 14-day hyperoxic exposure did not reverse this effect. In the nTS, hyperoxia for 7 days: 1) decreased BDNF gene expression by 67% and protein expression by 18%; 2) attenuated upregulation of BDNF mRNA levels in response to acute hypoxia; and 3) upregulated p75 neurotrophic receptor, truncated tropomyosin kinase B (inactive receptor), and cleaved caspase-3. These effects were not observed in the locus coeruleus (LC). Hyperoxia for 14 days also decreased tyrosine hydroxylase levels by 18% (P = 0.04) in nTS but not in the LC. In conclusion, hyperoxic exposure during early PND reduces neurotrophin levels in the carotid body and the nTS and shifts the balance of neurotrophic support from prosurvival to proapoptotic in the nTS, the primary brain stem site for central integration of sensory and autonomic inputs.


Advances in Experimental Medicine and Biology | 2009

Bicarbonate-Regulated Soluble Adenylyl Cyclase (sAC) mRNA Expression and Activity in Peripheral Chemoreceptors

Ana R. Nunes; Emília C. Monteiro; Sheree M. Johnson; Estelle B. Gauda

UNLABELLED Peripheral arterial chemoreceptors in the carotid body (CB) are modulated by pH/CO(2). Soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate ions (HCO(3)). Because CO(2)/HCO(3) mediates depolarization in chemoreceptors, we hypothesized that sAC mRNA would be expressed in the CB, and its expression and function would be regulated by CO(2)/HCO(3).Sprague-Dawley rats at postnatal days 16-17 were used to compare sAC mRNA gene expression between CB and non-chemosensitive tissues: superior cervical (SCG), petrosal (PG) and nodose ganglia (NG) by quantitative real time-PCR. Rat sAC gene expression was standardized to the expression of GAPDH (housekeeping gene) and the data were analyzed with the Pfaffl method. Gene and protein expression, and sAC regulation in the testis was used as a positive control. To determine the regulation of sAC mRNA expression and activity, all tissues were exposed to increasing concentrations of bicarbonate (0, 24, 44 mM, titrated with CO(2) and maintained a constant pH of 7.40). RESULTS sAC mRNA expression was between 2-11% of CB expression in the SCG, PG and NG. Furthermore, only in the CB did HCO(3) upregulate sAC gene expression and increase cAMP levels. CONCLUSION sAC mRNA and protein expression is present in peripheral arterial chemoreceptors and non-chemoreceptors. In the CB, CO(2)/HCO(3) not only activated sAC but also regulated its expression, suggesting that sAC may be involved in the regulation of cAMP levels in response to hyper/hypocapnia.


Journal of Applied Physiology | 2012

Effect of development on [Ca2+]i transients to ATP in petrosal ganglion neurons: a pharmacological approach using optical recording

Ana R. Nunes; Raul Chavez-Valdez; Tarrah Ezell; David F. Donnelly; Joel C. Glover; Estelle B. Gauda

ATP, acting through P2X(2)/P2X(3) receptor-channel complexes, plays an important role in carotid body chemoexcitation in response to natural stimuli in the rat. Since the channels are permeable to calcium, P2X activation by ATP should induce changes in intracellular calcium ([Ca(2+)](i)). Here, we describe a novel ex vivo approach using fluorescence [Ca(2+)](i) imaging that allows screening of retrogradely labeled chemoafferent neurons in the petrosal ganglion of the rat. ATP-induced [Ca(2+)](i) responses were characterized at postnatal days (P) 5-8 and P19-25. While all labeled cells showed a brisk increase in [Ca(2+)](i) in response to depolarization by high KCl (60 mM), only a subpopulation exhibited [Ca(2+)](i) responses to ATP. ATP (250-1,000 μM) elicited one of three temporal response patterns: fast (R1), slow (R2), and intermediate (R3). At P5-8, R2 predominated and its magnitude was attenuated 44% by the P2X(1) antagonist, NF449 (10 μM), and 95% by the P2X(1)/P2X(3)/P2X(2/3) antagonist, TNP-ATP (10 μM). At P19-25, R1 and R3 predominated and their magnitudes were attenuated 15% by NF449, 66% by TNP-ATP, and 100% by suramin (100 μM), a nonspecific P2 purinergic receptor antagonist. P2X(1) and P2X(2) protein levels in the petrosal ganglion decreased with development, while P2X(3) protein levels did not change significantly. We conclude that the profile of ATP-induced P2X-mediated [Ca(2+)](i) responses changes in the postnatal period, corresponding with changes in receptor isoform expression. We speculate that these changes may participate in the postnatal maturation of chemosensitivity.


Respiratory Physiology & Neurobiology | 2013

Bicarbonate-sensitive soluble and transmembrane adenylyl cyclases in peripheral chemoreceptors.

Ana R. Nunes; Andrew P. Holmes; Vedangi Sample; Prem Kumar; Martin J. Cann; Emília C. Monteiro; Jin Zhang; Estelle B. Gauda

Stimulation of the carotid body (CB) chemoreceptors by hypercapnia triggers a reflex ventilatory response via a cascade of cellular events, which includes generation of cAMP. However, it is not known if molecular CO2/HCO3(-) and/or H(+) mediate this effect and how these molecules contribute to cAMP production. We previously reported that the CB highly expresses HCO3(-)-sensitive soluble adenylyl cyclase (sAC). In the present study we systematically characterize the role of sAC in the CB, comparing the effect of isohydric hypercapnia (IH) in cAMP generation through activation of sAC or transmembrane-adenylyl cyclase (tmAC). Pharmacological deactivation of sAC and tmAC decreased the CB cAMP content in normocapnia and IH with no differences between these two conditions. Changes from normocapnia to IH did not effect the degree of PKA activation and the carotid sinus nerve discharge frequency. sAC and tmAC are functional in CB but intracellular elevations in CO2/HCO3(-) in IH conditions on their own are insufficient to further activate these enzymes, suggesting that the hypercapnic response is dependent on secondary acidosis.


European Journal of Pharmacology | 2015

Efficacy of carvedilol in reversing hypertension induced by chronic intermittent hypoxia in rats

Lucília N. Diogo; Sofia A. Pereira; Ana R. Nunes; Ricardo A. Afonso; Ana Isabel Santos; Emília C. Monteiro

Animal models of chronic intermittent hypoxia (CIH) mimic the hypertension observed in patients with obstructive sleep apnoea. Antihypertensive drugs were applied to these animal models to address the physiological mechanism but not to revert established hypertension. We aimed to investigate the efficacy of carvedilol (CVDL), an unselective beta-blocker that exhibits intrinsic anti-α1-adrenergic and antioxidant activities in a rat model of CIH-induced hypertension. The variability of CVDL enantiomers in plasma concentrations was also evaluated. Wistar rats with indwelling blood pressure telemeters were exposed during their sleep period to 5.6 CIH cycles/h, 10.5 h/day, for 60 days. CVDL was administered by gavage beginning on Day 36 of the CIH period and was continued for 25 days. R-(+)-CVDL and S-(-)-CVDL plasma concentrations were monitored by HPLC. CIH significantly increased diastolic and systolic blood pressure by 25.7 and 21.6 mm Hg respectively, while no effect was observed on the heart rate (HR). CVDL administration at 10, 30 and 50 mg/kg/day promoted a significant reduction in HR but did not affect arterial pressure. The S/(R+S) ratio of CVDL enantiomers was lower in rats exposed to CIH. The blockade of the sympathetic nervous system together with the putative pleiotropic effects of CVDL did not alter the CIH-induced hypertension. Although CIH induced pharmacokinetic changes in the R/(R+S) ratio, these effects do not appear to be responsible for the inability of CVDL to reverse this particular type of hypertension.


Frontiers in Physiology | 2014

Revisiting cAMP signaling in the carotid body

Ana R. Nunes; Andrew P. Holmes; Silvia V. Conde; Estelle B. Gauda; Emília C. Monteiro

Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.


Brain Research | 2016

Hippocampal neurogenesis response: What can we expect from two different models of hypertension?

Daniela Pedroso; Ana R. Nunes; Lucília N. Diogo; Carole Oudot; Emília C. Monteiro; Catherine Brenner; Helena L. A. Vieira

Hypertension is associated with cerebrovascular disease, white matter lesion and cognitive deficit, both in experimental models and clinical observations. Furthermore, in non-clinical models it is shown that hippocampus is affected by hypertension and hypoxia. Herein, two distinct hypertension models were used to study neurogenic response in hippocampus. Dahl salt sensitive (DSS) rat model is a genetic based idiopathic model, while chronic intermittent hypoxia (CIH) mimics the hypertension observed in patients with obstructive sleep apnea (OSA). Both models are chronic and trigger hypertension. No macroscopic alterations based on histological analysis were found in hippocampus derived from DSS and CIH exposure rats. Nevertheless, in hippocampus derived from CIH-induced hypertensive rats, there was a decrease on neuronal population (MAP2 and NeuN positive cells) and an increase on astrocytic marker GFAP. Accordingly, a higher increase on Ki67 expressing cells was found in dentate gyrus (DG) region, suggesting an enhancement of cell proliferation, concomitantly with an increase of Nestin staining, which indicates the presence of immature neurons under differentiation. While, in hippocampus of DSS rats with or without high salt diet, there was no remarkable difference indicating potential neuronal loss, astrocytic activation or neurogenesis. Furthermore, in both models hypertension did not alter the levels of expression of the stress response enzyme heme oxygenase-1 in DG. These data indicate that intermittent hypoxia might be the key factor involved in neurogenesis modulation in hippocampus. Furthermore, two hypotheses can be explored: (i) activation of neurogenesis is a response against neuronal loss induced by hypertension and/or hypoxia or (ii) neurogenesis can be directly stimulated by hypoxia as a neuroprotective mechanism.


Advances in Experimental Medicine and Biology | 2012

Effect of Oxygen on Phosphodiesterases (PDE) 3 and 4 Isoforms and PKA Activity in the Superior Cervical Ganglia

Ana R. Nunes; Vedangi Sample; Yang K. Xiang; Emília C. Monteiro; Estelle B. Gauda; Jin Zhang

UNLABELLED The cAMP-protein kinase A (PKA) signaling pathway is involved in regulating the release of transmitters from neurons and other cells. Multiple phosphodiesterase (PDE) isoforms regulate this pathway, however, the pattern of isoform expression and stimulus response across tissues has not been fully characterized.Using fluorescent resonance energy transfer (FRET)-based imaging in primary superior cervical ganglia (SCG) neurons and real-time qPCR, we explored the role of PDE3 and PDE4 isoforms and oxygen tension in the activation of PKA and changes in gene expression. These primary neurons were infected with an adenovirus containing A-Kinase activity reporter (AKAR3) and assayed for responses to PDE inhibitors: rolipram (ROL, 1 μM), milrinone (MIL, 10 μM) and IBMX (100 μM), and adenylyl cyclase activator forskolin (FSK, 50 μM). Different PDE activity patterns were observed in different cells: high PDE4 activity (n = 3), high PDE3 activity (n = 3) and presence of activity of other PDEs (n = 3). Addition of PKA inhibitor H89 (10 μM) completely reversed the response. We further studied the effect of oxygen in the PKA activity induced by PDE inhibition. Both normoxia (20%O(2)/5%CO(2)) and hypoxia (0%O(2)/5%CO(2)) induced a similar increase in the FRET emission ratio (14.5 ± 0.8 and 14.7 ± 0.8, respectively).PDE3a, PDE4b and PDE4d isoforms mRNAs were highly expressed in the whole SCG with no modulation by hypoxia. CONCLUSION Using a FRET-based PKA activity sensor, we show that primary SCG neurons can be used as a model system to dissect the contribution of different PDE isoforms in regulating cAMP/PKA signaling. The differential patterns of PDE regulation potentially represent subpopulations of ganglion cells with different physiological functions.


Respiratory Physiology & Neurobiology | 2014

Breathing and temperature control disrupted by morphine and stabilized by clonidine in neonatal rats.

Kalpashri Kesavan; Tarrah Ezell; Alexis Bierman; Ana R. Nunes; Frances J. Northington; Clarke G. Tankersley; Estelle B. Gauda

BACKGROUND Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. METHODS Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 min after intraperitoneal (IP) administration of morphine (2, 10 or 20 mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. RESULTS Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). CONCLUSION In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia.


Respiratory Physiology & Neurobiology | 2014

Soluble adenylyl cyclase in the locus coeruleus

Ana R. Nunes; Emília C. Monteiro; Estelle B. Gauda

Although it has been demonstrated that the CO2-sensitivity in the locus coeruleus (LC) is mediated by changes in pH, the involvement of HCO3(-) in the CO2-detection mechanism in these neurons cannot be excluded. In the present work, we characterized sAC for the first time in the LC and we asked whether this enzyme is important in the detection of changes in HCO3(-)/CO2 levels in these neurons, using an approach that allowed us to isolate CO2 from pH stimulus. sAC mRNA expression and activity were upregulated from 0mM HCO3(-)/0% CO2 to 24 mM HCO3(-)/5% CO2 in the LC but not in the cortex of the brain. Comparing the effects of sAC and tmAC inhibitors in the LC, we observed that both tmAC and sAC contribute to the generation of cAMP during normocapnic conditions but only sAC contributed to the generation of cAMP during isohydric hypercapnia. Furthermore, activation of tmAC induced an increase in sAC expression in LC, but not cortex. sAC may be involved in CO2 sensitivity in the LC, up to its threshold of saturation, with a particular contribution of this enzyme in situations when low HCO3(-) concentrations occur. Its role should be further explored in pathological states to determine whether sAC activation with HCO3(-) alters ventilation.

Collaboration


Dive into the Ana R. Nunes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frances J. Northington

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucília N. Diogo

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Alexis Bierman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ariel Mason

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Rajni Ahlawat

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge