Ana Rosa Pérez
Facultad de Ciencias Médicas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Rosa Pérez.
Clinical and Experimental Immunology | 2002
Eduardo Roggero; Ana Rosa Pérez; Maximiliano Tamae-Kakazu; Isabel Piazzon; Irene Nepomnaschy; J. Wietzerbin; E. Serra; Silvia Revelli; Oscar Bottasso
Inoculation of Trypanosoma cruzi, Tulahuén strain, into C57BL/6 and BALB/c mice led to an acute infection characterized by marked parasitaemia, myocardial inflammation and thymocyte depletion. While C57BL/6 mice showed a progressive and lethal disease, BALB/c mice partly recovered. To characterize these murine models more effectively, we studied the parasite burden, serum levels of major infection outcome‐related cytokines, the in vitro features of T. cruzi infection in peritoneal macrophages and the immunophenotype of thymic cells. The greater disease severity of T. cruzi‐infected C57BL/6 mice was not linked to an increased parasite load, as parasitaemia, myocardial parasite nests and amastigote counts in peritoneal macrophages were not different from those in BALB/c mice. Cortical thymocyte loss was accompanied by the presence of apoptotic bodies and fragmented nuclear DNA, whereas fluorocytometric analysis at 17u2003days postinfection (p.i.) revealed a more pronounced loss of CD4+u2003CD8+ cells in C57BL/6 mice. This group displayed higher levels of TNF‐α on days 14 and 21 p.i., in the presence of lower IL‐1β and IL‐10 concentrations by days 14 and 21, and days 7 and 14 p.i., respectively. Day‐21 evaluation showed higher concentrations of nitrate and TNF‐α soluble receptors in C57BL/6 mice with no differences in IFN‐γ levels, with respect to the BALB/c group. Increased morbidity of C57BL/6 T. cruzi‐infected mice does not seem to result from an aggravated infection but from an unbalanced relationship between pro‐ and anti‐inflammatory mediators.
Journal of Neuroimmunology | 2011
Ana Rosa Pérez; Suse Dayse Silva-Barbosa; Luiz Ricardo Berbert; S. Revelli; J. Beloscar; Wilson Savino; Oscar Bottasso
We studied the features of parallel immunoneuroendocrine responses in patients with different degrees of chronic Chagas myocarditis (indeterminate, mild/moderate or severe). A systemic inflammatory scenario was evident in patients with severe myocarditis compared to healthy subjects. This was paralleled by a disrupted activation of the hypothalamus-pituitary-adrenal axis, characterized by decreased concentrations of dehydroepiandrosterone-sulfate (DHEA-s) and an unbalanced cortisol/DHEA-s ratio, reinforcing the view that severe Chagas disease is devoid of an adequate anti-inflammatory milieu, likely involved in pathology. Our study constitutes the first demonstration of neuroendocrine disturbances, in parallel to a systemic inflammatory profile, during progressive human Chagas disease.
Journal of Virological Methods | 2011
Belkis E. Marelli; Ana Rosa Pérez; Claudia Banchio; Diego de Mendoza; Christian Magni
Rotaviruses are the major cause of worldwide infectious diarrhea in children and vaccination is considered to be the most effective way to control these infections. The development of a mucosal live vaccine using the food-grade lactic acid bacteria Lactococcus lactis as antigen vehicle is an attractive and safe vaccination strategy against rotavirus. In this study, the construction of recombinant L. lactis strains able to produce the rotavirus spike-protein subunit VP8 in cytoplasmic, secreted and cell wall-anchored forms is reported. Evaluation of the immune response generated after immunization was conducted in a mouse model. The present study shows that animals inoculated orally with the L. lactis strain producing the cytoplasmic form of VP8 (LL1) developed significant levels of intestinal IgA antibodies while animals receiving L. lactis producing the cell wall-anchored VP8 form (LL3) exhibited anti-VP8 antibodies at both intestinal and systemic levels. Furthermore, it was observed that intestinal antibodies of the LL1-treated group and serum antibodies of the LL3-treated group were able to block rotavirus infection by 50% and 100%, respectively. These encouraging results represent a step towards the development of a new and safe mucosal vaccine against rotavirus.
Clinical and Experimental Immunology | 2009
Ana Rosa Pérez; Germán H. Fontanella; Anália Nocito; Silvia Revelli; Oscar Bottasso
Tumour necrosis factor (TNF)‐α is crucial for resistance to Trypanosoma cruzi acute infection, but there is scant information on its role during the chronic phase. To address this issue, we analysed whether a short treatment with a TNF‐α blocker affected the course and characteristics of chronic disease in a rat experimental model of T. cruzi infection. An anti‐TNF‐α agent (infliximab) was administered during the chronic phase for a period of 4 weeks (3u2003mg/kg/week), while control infected rats were inoculated with saline physiological solution. Search for parasites yielded non‐successful results in all infected groups, irrespective of treatment. Nevertheless, the presence of T. cruzi kDNA in heart tissue was detected in infected and infected plus treated animals. Because infliximab might induce changes in the anti‐parasite cytokine response, circulating levels of interleukin (IL)‐10, interferon‐gamma and nitric oxide were evaluated. An increase in IL‐10 levels was observed only in the infected group treated with the anti‐TNF‐α blocker compared to the remaining groups (Pu2003<u20030·05). A clear attenuation of histological damage associated with a diminution of cardiac TNF‐α mRNA expression was observed in the infected and treated animals compared to the infected and non‐treated group. Blocking of TNF‐α during a relatively short period in chronically infected rats did not lead to evident parasite reactivation but reduced myocarditis severity significantly, indicating a role of this cytokine in the pathogenesis of chronic myocardial damage.
Annals of the New York Academy of Sciences | 2009
Eduardo Roggero; Ana Rosa Pérez; Oscar Bottasso; Hugo O. Besedovsky; Adriana del Rey
The cytokine‐mediated stimulation of the hypothalamus–pituitary–adrenal (HPA) axis is relevant for immunoregulation and survival during bacterial endotoxemia and certain viral infections. However, only limited information is available regarding the effect of endogenous glucocorticoids on parasitic diseases. Here, we discuss evidence that the increased levels of corticosterone that occur following Trypanosoma cruzi infection in mice is an endocrine response that protects the host by impeding an excessive production of pro‐inflammatory cytokines. Comparative studies between susceptible C57Bl/6J and resistant Balb/c mice indicate that the predisposition to the disease depends on the appropriate timing and magnitude of the activation of the HPA axis. However, this endocrine response also results in thymus atrophy and depletion of CD4+CD8+ by apoptosis. On the other hand, using tumor necrosis factor (TNF)‐receptor knockout mice, we found that TNF‐α plays a complex role during this disease; it is involved in the mediation of cardiac tissue damage but it also contributes to prolonged survival. Taken together, this evidence indicates that a subtle balance between endocrine responses and cytokine production is necessary for an efficient defense against T. cruzi infection.
PLOS ONE | 2013
Silvina R. Villar; M. Teresa Ronco; Rodrigo Fernández Bussy; Eduardo Roggero; Ailin Lepletier; Romina Manarin; Wilson Savino; Ana Rosa Pérez; Oscar Bottasso
Adrenal steroidogenesis is under a complex regulation involving extrinsic and intrinsic adrenal factors. TNF-α is an inflammatory cytokine produced in response to tissue injury and several other stimuli. We have previously demonstrated that TNF-R1 knockout (TNF-R1−/−) mice have a dysregulated synthesis of glucocorticoids (GCs) during Trypanosoma cruzi acute infection. Since TNF-α may influence GCs production, not only through the hypothalamus-pituitary axis, but also at the adrenal level, we now investigated the role of this cytokine on the adrenal GCs production. Wild type (WT) and TNF-R1−/− mice undergoing acute infection (Tc-WT and Tc-TNF-R1−/− groups), displayed adrenal hyperplasia together with increased GCs levels. Notably, systemic ACTH remained unchanged in Tc-WT and Tc-TNF-R1−/− compared with uninfected mice, suggesting some degree of ACTH-independence of GCs synthesis. TNF-α expression was increased within the adrenal gland from both infected mouse groups, with Tc-WT mice showing an augmented TNF-R1 expression. Tc-WT mice showed increased levels of P-p38 and P-ERK compared to uninfected WT animals, whereas Tc-TNF-R1−/− mice had increased p38 and JNK phosphorylation respect to Tc-WT mice. Strikingly, adrenal NF-κB and AP-1 activation during infection was blunted in Tc-TNF-R1−/− mice. The accumulation of mRNAs for steroidogenic acute regulatory protein and cytochrome P450 were significantly increased in both Tc-WT and Tc-TNF-R1−/− mice; being much more augmented in the latter group, which also had remarkably increased GCs levels. TNF-α emerges as a potent modulator of steroidogenesis in adrenocortical cells during T. cruzi infection in which MAPK pathways, NF-κB and AP-1 seem to play a role in the adrenal synthesis of pro-inflammatory cytokines and enzymes regulating GCs synthesis. These results suggest the existence of an intrinsic immune-adrenal interaction involved in the dysregulated synthesis of GCs during murine Chagas disease.
Vaccine | 2015
Iván Bontempi; Miguel Hernán Vicco; Gabriel Cabrera; Silvina R. Villar; Florencia Belén González; Eduardo Roggero; Paul Ameloot; Nico Callewaert; Ana Rosa Pérez; Iván S. Marcipar
Recombinant protein vaccines are safe but elicit low immunological responses. The new generation of adjuvants is currently reversing this situation. Here, a new antigen-adjuvant combination for protection against experimental Chagas disease was assessed. The antigen used in the formulation was a glycosylated mutant inactive trans-sialidase (mTS) that was previously proven to be highly protective against Trypanosoma cruzi infection; here, we show that it can be produced in large quantities and high quality using Pichia pastoris. The adjuvant used in the formulation was ISCOMATRIX (IMX), which was found to be effective and safe in human clinical trials of vaccines designed to control other intracellular infections. Fifteen days after the third immunization, mice immunized with mTS-IMX showed a TS-specific IgG response with titers >10(6) and high avidity, an increased IgG2a/IgG1 ratio, significant delayed-type hypersensitivity (DTH) reactivity, a balanced production of IFN-γ and IL-10 by splenocytes and a strong IFN-γ secretion by CD8(+) T lymphocytes. When these mice where challenged with 1000 trypomastigotes of T. cruzi, all mTS-IMX immunized mice survived, whereas mice immunized with mTS alone, IMX or PBS exhibited high mortality. Remarkably, during acute infection, when the parasitemia is highest in this infection model (day 21), mTS-IMX immunized mice had ∼50 times less parasitemia than non-immunized mice. At this moment and also in the chronic phase, 100 days after infection, tissue presented ∼4.5 times lower parasite load and associated inflammatory infiltrate and lesions. These results indicate that protection against Chagas disease can be achieved by a protein antigen-adjuvant mTS formulation that is compatible with human medicine. Therefore, the current formulation is a highly promising T. cruzi vaccine candidate to be tested in clinical trials.
Brain Behavior and Immunity | 2017
Ana Rosa Pérez; Flavia Lambertucci; Florencia Belén González; Eduardo Roggero; Oscar Bottasso; Juliana de Meis; María Teresa Ronco; Silvina R. Villar
Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.
Oncotarget | 2017
Estefanía Prochetto; Carolina Roldán; Iván Bontempi; Daiana Bertona; Luz Peverengo; Miguel Hernán Vicco; Luz Rodeles; Ana Rosa Pérez; Iván S. Marcipar; Gabriel Cabrera
Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested.Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control.Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice.In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC.Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested.
Frontiers in Microbiology | 2018
Ingrid Quintana; Martín Espariz; Silvina R. Villar; Florencia Belén González; Maria F. Pacini; Gabriel Cabrera; Iván Bontempi; Estefanía Prochetto; Jörg Stülke; Ana Rosa Pérez; Iván S. Marcipar; Víctor S. Blancato; Christian Magni
Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3′ 5′- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.