Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Senra is active.

Publication


Featured researches published by Ana Senra.


Diabetes | 2014

GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK

Daniel Beiroa; Monica Imbernon; Rosalía Gallego; Ana Senra; Daniel Herranz; Francesc Villarroya; Manuel Serrano; Johan Fernø; Javier Salvador; Javier Escalada; Carlos Dieguez; Miguel López; Gema Frühbeck; Ruben Nogueiras

GLP-1 receptor (GLP-1R) is widely located throughout the brain, but the precise molecular mechanisms mediating the actions of GLP-1 and its long-acting analogs on adipose tissue as well as the brain areas responsible for these interactions remain largely unknown. We found that central injection of a clinically used GLP-1R agonist, liraglutide, in mice stimulates brown adipose tissue (BAT) thermogenesis and adipocyte browning independent of nutrient intake. The mechanism controlling these actions is located in the hypothalamic ventromedial nucleus (VMH), and the activation of AMPK in this area is sufficient to blunt both central liraglutide-induced thermogenesis and adipocyte browning. The decreased body weight caused by the central injection of liraglutide in other hypothalamic sites was sufficiently explained by the suppression of food intake. In a longitudinal study involving obese type 2 diabetic patients treated for 1 year with GLP-1R agonists, both exenatide and liraglutide increased energy expenditure. Although the results do not exclude the possibility that extrahypothalamic areas are also modulating the effects of GLP-1R agonists, the data indicate that long-acting GLP-1R agonists influence body weight by regulating either food intake or energy expenditure through various hypothalamic sites and that these mechanisms might be clinically relevant.


The Journal of Clinical Endocrinology and Metabolism | 2012

Craniopharyngiomas Express Embryonic Stem Cell Markers (SOX2, OCT4, KLF4, and SOX9) as Pituitary Stem Cells but Do Not Coexpress RET/GFRA3 Receptors

Montserrat Garcia-Lavandeira; Carmen Sáez; Esther Diaz-Rodriguez; Sihara Perez-Romero; Ana Senra; Carlos Dieguez; Miguel A. Japón; Clara V. Alvarez

CONTEXT Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). OBJECTIVE Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathkes pouch remnants, express similar markers as normal pituitary stem cells. DESIGN We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). RESULTS Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. CONCLUSIONS Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated growth of CRF.


Gastroenterology | 2013

Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways

Monica Imbernon; Daniel Beiroa; María Jesús Vázquez; Donald A. Morgan; Christelle Veyrat–Durebex; Begoña Porteiro; Adenis Díaz–Arteaga; Ana Senra; Sílvia Busquets; Douglas A. Velásquez; Omar Al Massadi; Luis M. Varela; Marina Gándara; Francisco J. López Soriano; Rosalía Gallego; Luisa M. Seoane; Josep M. Argilés; Miguel López; Roger J. Davis; Guadalupe Sabio; Françoise Rohner–Jeanrenaud; Kamal Rahmouni; Carlos Dieguez; Ruben Nogueiras

BACKGROUND & AIMS Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.


Endocrinology | 2013

Ghrelin Requires p53 to Stimulate Lipid Storage in Fat and Liver

Begoña Porteiro; Alberto Díaz-Ruiz; Gloria Martínez; Ana Senra; Anxo Vidal; Manuel Serrano; Oreste Gualillo; Miguel López; María M. Malagón; Carlos Dieguez; Ruben Nogueiras

Ghrelin, a stomach-derived peptide, stimulates feeding behavior and adiposity. For its orexigenic action, ghrelin triggers a central SIRT1/p53/AMPK pathway. The tumor suppressor p53 also plays an important role in white adipose tissue (WAT), where it is up-regulated in the adipocytes of obese mice. It is not known, however, whether p53 has any role in mediating the peripheral action of ghrelin. In the present study, chronic peripheral ghrelin treatment resulted in increased body weight and fat-mass gain in wild-type mice. Correspondingly, mRNA levels of several adipogenic and fat-storage-promoting enzymes were up-regulated in WAT, whereas hepatic triglyceride content and lipogenic enzymes were also increased in wild-type mice following ghrelin treatment. In contrast, mice lacking p53 failed to respond to ghrelin treatment, with their body weight, fat mass, and adipocyte and hepatic metabolism remaining unchanged. Thus, our results show that p53 is necessary for the actions of ghrelin on WAT and liver, leading to changes in expression levels of lipogenic and adipogenic genes, and modifying body weight.


Oncogene | 2012

Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells

Esther Diaz-Rodriguez; Montserrat Garcia-Lavandeira; Sihara Perez-Romero; Ana Senra; C Cañibano; Ignacio Palmero; M G Borrello; Carlos Dieguez; Clara V. Alvarez

Somatotrophs produce growth hormone (GH) and are the most abundant secretory cells of the pituitary. Somatotrophs express the transcription factor Pit-1 and the dependence receptor RET, its co-receptor GFRa1 and ligand GDNF. Pit-1 is a transcription factor essential for somatotroph proliferation and differentiation and for GH expression. GDNF represses excess Pit-1 expression preventing excess GH. In the absence of GDNF, RET behaves as a dependence receptor, becomes intracellularly processed and induces strong Pit-1 expression leading to p53 accumulation and apoptosis. How accumulation of Pit-1 leads to p53 expression is unknown. We have unveiled the relationship of Pit-1 with the p19Arf gene. There is a parallel correlation of RET processing, Pit-1 increase and ARF protein and mRNA expression. Interfering the pathway with RET, Pit-1 or p19Arf siRNA blocked apoptosis. We have found a Pit-1 DNA-binding element within the ARF promoter. Pit-1 directly regulates the CDKN2A locus and binds to the p19Arft promoter inducing p19Arf gene expression. The Pit-1-binding element is conserved in rodents and humans. RET/Pit-1 induces p19Arf/p53 and apoptosis not only in a somatotroph cell line but also in primary cultures of pituitary somatotrophs, where ARF siRNA interference also blocks p53 and apoptosis. Analyses of the somatotrophs in whole pituitaries supported the above findings. Thus Pit-1, a differentiation factor, activates the oncogene-induced apoptosis (OIA) pathway as oncogenes exerting a tight control in somatotrophs to prevent the disease due to excess of GH (insulin-resistance, metabolic disease, acromegaly).


Diabetes | 2016

Uroguanylin Action in the Brain Reduces Weight Gain in Obese Mice via Different Efferent Autonomic Pathways

Cintia Folgueira; Daniel Beiroa; Aurelie Callon; Omar Al-Massadi; Silvia Barja-Fernandez; Ana Senra; Johan Fernø; Miguel López; Carlos Dieguez; Felipe F. Casanueva; Françoise Rohner-Jeanrenaud; Luisa M. Seoane; Ruben Nogueiras

The gut-brain axis is of great importance in the control of energy homeostasis. The identification of uroguanylin (UGN), a peptide released in the intestines that is regulated by nutritional status and anorectic actions, as the endogenous ligand for the guanylyl cyclase 2C receptor has revealed a new system in the regulation of energy balance. We show that chronic central infusion of UGN reduces weight gain and adiposity in diet-induced obese mice. These effects were independent of food intake and involved specific efferent autonomic pathways. On one hand, brain UGN induces brown adipose tissue thermogenesis, as well as browning and lipid mobilization in white adipose tissue through stimulation of the sympathetic nervous system. On the other hand, brain UGN augments fecal output through the vagus nerve. These findings are of relevance as they suggest that the beneficial metabolic actions of UGN through the sympathetic nervous system do not involve nondesirable gastrointestinal adverse effects, such as diarrhea. The present work provides mechanistic insights into how UGN influences energy homeostasis and suggests that UGN action in the brain represents a feasible pharmacological target in the treatment of obesity.


Endocrinology | 2016

Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice

Omar Al-Massadi; Begoña Porteiro; Doreen Kuhlow; Markus Köhler; María J. Gonzalez-Rellan; Montserrat Garcia-Lavandeira; Esther Diaz-Rodriguez; Mar Quiñones; Ana Senra; Clara V. Alvarez; Miguel López; Carlos Dieguez; Tim J. Schulz; Ruben Nogueiras

p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.


Hepatology | 2016

Hypothalamic kappa opioid receptor mediates both diet‐induced and melanin concentrating hormone–induced liver damage through inflammation and endoplasmic reticulum stress

Monica Imbernon; Estrella Sanchez-Rebordelo; Amparo Romero-Picó; Imre Kalló; Melissa J. S. Chee; Begoña Porteiro; Omar Al-Massadi; Cristina Contreras; Johan Fernø; Ana Senra; Rosalía Gallego; Cintia Folgueira; Luisa M. Seoane; Margriet van Gestel; Roger Adan; Zsolt Liposits; Carlos Dieguez; Miguel López; Ruben Nogueiras

The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose‐regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH‐R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone–induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline–deficient, diet‐induced and choline‐deficient, high‐fat diet–induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose‐regulated protein 78 kDa in the liver abolished hypothalamic κOR‐induced steatosis by reducing hepatic ER stress. Conclusions: This study reveals a novel hypothalamic–parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086‐1104)The opioid system is widely known to modulate the brain reward system and thus affect human and animal behaviour, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors over-expressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. ER stress was inhibited by pharmacological (tauroursodeoxycholic acid - TUDCA) and genetic (over-expression of the chaperone glucose-regulated protein 78 kDa - GRP78) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and Western blot. We show that in the LHA, κOR directly controls hepatic lipid metabolism via the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor (MCH-R1) in the LHA and genetic disruption of κOR reduced MCH-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient diet- and choline deficient-high fat diet-induced ER stress, inflammation, steatohepatitis and fibrosis, whereas over-expression of κOR in this area promoted liver steatosis. Over-expression of the GRP78 in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. CONCLUSIONS: Overall, this study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function via inflammation and ER stress independent of changes in food intake or body weight. These findings might have implications for the clinical use of opioid receptor antagonists. This article is protected by copyright. All rights reserved.


The Journal of Clinical Endocrinology and Metabolism | 2013

Humanized Medium (h7H) Allows Long-Term Primary Follicular Thyroid Cultures From Human Normal Thyroid, Benign Neoplasm, and Cancer

Susana B. Bravo; María E.R. García-Rendueles; Angela R. Garcia-Rendueles; Joana S. Rodrigues; Sihara Perez-Romero; Montserrat Garcia-Lavandeira; Maria Suarez-Fariña; Francisco Barreiro; Barbara Czarnocka; Ana Senra; Maria V. Lareu; Javier Rodríguez-García; José Cameselle-Teijeiro; Clara V. Alvarez

CONTEXT Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. OBJECTIVE The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. METHODS Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. RESULTS We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Graves hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. CONCLUSIONS Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.


Neurobiology of Disease | 2015

Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease

Alejandro Ruiz-Riquelme; Sofía Sánchez-Iglesias; Alberto Rábano; Encarna Guillén-Navarro; Rosario Domingo-Jiménez; Adriana Ramos; Isaac Rosa; Ana Senra; Peter Nilsson; Ángel García; David Araújo-Vilar; Jesús R. Requena

Celias Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers.

Collaboration


Dive into the Ana Senra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel López

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Ruben Nogueiras

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Rosalía Gallego

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Imbernon

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Omar Al-Massadi

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge