Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Sepac is active.

Publication


Featured researches published by Ana Sepac.


BMC Developmental Biology | 2010

Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

Karim Si-Tayeb; Fallon K. Noto; Ana Sepac; Filip Sedlic; Zeljko J. Bosnjak; John Lough; Stephen A. Duncan

BackgroundThe use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS) cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry.ResultsHere we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture.ConclusionsSimple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development.


American Journal of Physiology-cell Physiology | 2010

Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+

Filip Sedlic; Ana Sepac; Danijel Pravdic; Amadou K.S. Camara; Martin Bienengraeber; Anna K. Brzezinska; Tetsuro Wakatsuki; Zeljko J. Bosnjak

During reperfusion, the interplay between excess reactive oxygen species (ROS) production, mitochondrial Ca(2+) overload, and mitochondrial permeability transition pore (mPTP) opening, as the crucial mechanism of cardiomyocyte injury, remains intriguing. Here, we investigated whether an induction of a partial decrease in mitochondrial membrane potential (DeltaPsi(m)) is an underlying mechanism of protection by anesthetic-induced preconditioning (APC) with isoflurane, specifically addressing the interplay between ROS, Ca(2+), and mPTP opening. The magnitude of APC-induced decrease in DeltaPsi(m) was mimicked with the protonophore 2,4-dinitrophenol (DNP), and the addition of pyruvate was used to reverse APC- and DNP-induced decrease in DeltaPsi(m). In cardiomyocytes, DeltaPsi(m), ROS, mPTP opening, and cytosolic and mitochondrial Ca(2+) were measured using confocal microscope, and cardiomyocyte survival was assessed by Trypan blue exclusion. In isolated cardiac mitochondria, antimycin A-induced ROS production and Ca(2+) uptake were determined spectrofluorometrically. In cells exposed to oxidative stress, APC and DNP increased cell survival, delayed mPTP opening, and attenuated ROS production, which was reversed by mitochondrial repolarization with pyruvate. In isolated mitochondria, depolarization by APC and DNP attenuated ROS production, but not Ca(2+) uptake. However, in stressed cardiomyocytes, a similar decrease in DeltaPsi(m) attenuated both cytosolic and mitochondrial Ca(2+) accumulation. In conclusion, a partial decrease in DeltaPsi(m) underlies cardioprotective effects of APC by attenuating excess ROS production, resulting in a delay in mPTP opening and an increase in cell survival. Such decrease in DeltaPsi(m) primarily attenuates mitochondrial ROS production, with consequential decrease in mitochondrial Ca(2+) uptake.


Anesthesiology | 2010

Isoflurane Preconditioning Elicits Competent Endogenous Mechanisms of Protection from Oxidative Stress in Cardiomyocytes Derived from Human Embryonic Stem Cells

Ana Sepac; Filip Sedlic; Karim Si-Tayeb; John Lough; Stephen A. Duncan; Martin Bienengraeber; Frank Park; Jinhee Kim; Zeljko J. Bosnjak

Background:Human embryonic stem cell (hESC)-derived cardiomyocytes potentially represent a powerful experimental model complementary to myocardium obtained from patients that is relatively inaccessible for research purposes. We tested whether anesthetic-induced preconditioning (APC) with isoflurane elicits competent protective mechanisms in hESC-derived cardiomyocytes against oxidative stress to be used as a model of human cardiomyocytes for studying preconditioning. Methods:H1 hESC cell line was differentiated into cardiomyocytes using growth factors activin A and bone morphogenetic protein-4. Living ventricular hESC-derived cardiomyocytes were identified using a lentiviral vector expressing a reporter gene (enhanced green fluorescent protein) driven by a cardiac-specific human myosin light chain-2v promoter. Mitochondrial membrane potential, reactive oxygen species production, opening of mitochondrial permeability transition pore, and survival of hESC-derived cardiomyocytes were assessed using confocal microscopy. Oxygen consumption was measured in contracting cell clusters. Results:Differentiation yielded a high percentage (∼85%) of cardiomyocytes in beating clusters that were positive for cardiac-specific markers and exhibited action potentials resembling those of mature cardiomyocytes. Isoflurane depolarized mitochondria, attenuated oxygen consumption, and stimulated generation of reactive oxygen species. APC protected these cells from oxidative stress-induced death and delayed mitochondrial permeability transition pore opening. Conclusions:APC elicits competent protective mechanisms against oxidative stress in hESC-derived cardiomyocytes, suggesting the feasibility to use these cells as a model of human cardiomyocytes for studying APC and potentially other treatments/diseases. Our differentiation protocol is very efficient and yields a high percentage of cardiomyocytes. These results also suggest a promising ability of APC to protect and improve engraftment of hESC-derived cardiomyocytes into the ischemic heart.


Anesthesiology | 2012

Marked hyperglycemia attenuates anesthetic preconditioning in human induced pluripotent stem cell-derived cardiomyocytes

Scott Canfield; Ana Sepac; Filip Sedlic; Maria Muravyeva; Xiaowen Bai; Zeljko J. Bosnjak

Introduction:Anesthetic preconditioning protects cardiomyocytes from oxidative stress-induced injury, but it is ineffective in patients with diabetes mellitus. To address the role of hyperglycemia in the inability of diabetic individuals to be preconditioned, we used human cardiomyocytes differentiated from induced pluripotent stem cells generated from patients with or without type 2 diabetes mellitus (DM-iPSC- and N-iPSC-CMs, respectively) to investigate the efficacy of preconditioning in varying glucose conditions (5, 11, and 25 mM). Methods:Induced pluripotent stem cells were induced to generate cardiomyocytes by directed differentiation. For subsequent studies, cardiomyocytes were identified by genetic labeling with enhanced green fluorescent protein driven by a cardiac-specific promoter. Cell viability was analyzed by lactate dehydrogenase assay. Confocal microscopy was utilized to measure opening of the mitochondrial permeability transition pore and the mitochondrial adenosine 5′-triphosphate-sensitive potassium channels. Results:Isoflurane (0.5 mM) preconditioning protected N-iPSC- and DM-iPSC-CMs from oxidative stress-induced lactate dehydrogenase release and mitochondrial permeability transition pore opening in 5 mM and 11 mM glucose. Isoflurane triggered mitochondrial adenosine-5′-triphosphate-sensitive potassium channel opening in N-iPSC-CMs in 5 mM and 11 mM glucose and in DM-iPSC-CMs in 5 mM glucose; 25 mM glucose disrupted anesthetic preconditioning-mediated protection in DM-iPSC- and N-iPSC-CMs. Conclusions:The opening of mitochondrial adenosine 5′-triphosphate-sensitive potassium channels are disrupted in DM-iPSC-CMs in 11 mM and 25 mM glucose and in N-iPSC-CMs in 25 mM glucose. Cardiomyocytes derived from healthy donors and patients with a specific disease, such as diabetes in this study, open possibilities in studying genotype- and phenotype-related pathologies in a human-relevant model.


Biochimica et Biophysica Acta | 2010

Monitoring Mitochondrial Electron Fluxes Using NAD(P)H-Flavoprotein Fluorometry Reveals Complex Action of Isoflurane on Cardiomyocytes

Filip Sedlic; Danijel Pravdic; Naoyuki Hirata; Yasushi Mio; Ana Sepac; Amadou K.S. Camara; Tetsuro Wakatsuki; Zeljko J. Bosnjak; Martin Bienengraeber

Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(P)H and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes.


Cell Transplantation | 2012

Comparison of Cardiomyogenic Potential among Human ESC and iPSC Lines

Ana Sepac; Karim Si-Tayeb; Filip Sedlic; Sara Barrett; Scott Canfield; Stephen A. Duncan; Zeljko J. Bosnjak; John Lough

We recently reported that, following induction of clumps of pluripotent H1 human embryonic stem cells (hESCs) with activin-A and Bmp4 in defined medium for 5 days, widespread differentiation of rhythmically contracting cardiomyocytes occurs within 3–4 weeks. In this study, the same approach was used to assess whether human induced pluripotent stem cells (hiPSCs), which may theoretically provide an unlimited source of patient-matched cells for transplantation therapy, can similarly undergo cardiomyocyte differentiation. Differentiation of four pluripotent cell lines (H1 and H9 hESCs and C2a and C6a hiPSCs) was compared in parallel by monitoring rhythmic contraction, morphologic differentiation, and expression of cardiomyogenic genes. Based on expression of the cardiomyogenic lineage markers MESP1, ISL1, and NKX2-5, all four cell lines were induced into the cardiomyogenic lineage. However, in contrast to the widespread appearance of striations and rhythmic contractility seen in H9 and especially in H1 hESCs, both hiPSC lines exhibited poor terminal differentiation. These findings suggest that refined modes of generating hiPSCs, as well as of inducing cardiomyogenesis in them, may be required to fulfill their potential as agents of cardiac regeneration.


Acta Anaesthesiologica Scandinavica | 2011

Isoflurane decreases death of hESC-derived Nkx2.5+ cardiac progenitor cells

J. Kim; Ah-Young Oh; Young Min Choi; S.Y. Ku; Y.Y. Kim; N.J. Lee; Ana Sepac; Zeljko J. Bosnjak

Cardiac progenitor cells (CPCs) derived from human embryonic stem cells (hESCs) can multiply and generate cardiomyocytes, offering their tremendous potential for cardiac regenerative therapy. However, poor survival under stressful conditions is a major hurdle in the regeneration. We investigated whether isoflurane‐induced preconditioning can increase hESC‐derived CPC survival under oxidative stress.


Acta Anaesthesiologica Scandinavica | 2011

Isoflurane decreases death of human embryonic stem cell-derived, transcriptional marker Nkx2.5+ cardiac progenitor cells

J. H. Kim; Ah-Young Oh; Young Min Choi; S.Y. Ku; Y.Y. Kim; N.J. Lee; Ana Sepac; Zeljko J. Bosnjak

Cardiac progenitor cells (CPCs) derived from human embryonic stem cells (hESCs) can multiply and generate cardiomyocytes, offering their tremendous potential for cardiac regenerative therapy. However, poor survival under stressful conditions is a major hurdle in the regeneration. We investigated whether isoflurane‐induced preconditioning can increase hESC‐derived CPC survival under oxidative stress.


Journal of Cellular Physiology | 2017

Targeted Modification of Mitochondrial ROS Production Converts High Glucose‐Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning

Filip Sedlic; Maria Muravyeva; Ana Sepac; Marija Sedlic; Anna Marie Williams; Meiying Yang; Xiaowen Bai; Zeljko J. Bosnjak

Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose‐driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real‐time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose‐induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose‐induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC‐induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose‐induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose‐induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216–224, 2017.


Virchows Archiv | 2014

Reproducibility of histological subtyping of malignant pleural mesothelioma

Luka Brcic; Marko Jakopovic; Iva Brčić; Vlasta Klarić; Milan Milošević; Ana Sepac; Miroslav Samaržija; Sven Seiwerth

Collaboration


Dive into the Ana Sepac's collaboration.

Top Co-Authors

Avatar

Filip Sedlic

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Zeljko J. Bosnjak

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Danijel Pravdic

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

John Lough

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Karim Si-Tayeb

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Maria Muravyeva

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Martin Bienengraeber

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Stephen A. Duncan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Scott Canfield

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Xiaowen Bai

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge