Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Torroglosa is active.

Publication


Featured researches published by Ana Torroglosa.


Journal of Molecular Medicine | 2011

Novel mutations at RET ligand genes preventing receptor activation are associated to Hirschsprung’s disease

Macarena Ruiz-Ferrer; Ana Torroglosa; Berta Luzón-Toro; Raquel M. Fernández; Guillermo Antiñolo; Lois M. Mulligan; Salud Borrego

Hirschsprung disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract. The major susceptibility gene for the disease is the RET proto-oncogene, which encodes a receptor tyrosine kinase activated by the glial cell-derived neurotrophic factor (GDNF) family ligands. We analyzed the coding sequence of GDNF, NTRN, and, for the first time, ARTN and PSPN in HSCR patients and detected several novel variants potentially involved in the pathogenesis of HSCR. In vitro functional analysis revealed that the variant R91C in PSPN would avoid the correct expression and secretion of the mature protein. Moreover, this study also highlighted the role of both this variant and F127L in NRTN in altering RET activation by a significant reduction in phosphorylation. To support the role of PSPN R91C in HSCR phenotype, enteric nervous system (ENS) progenitors were isolated from human postnatal gut tissues and expression of GFRα4, the main co-receptor for PSPN, was demonstrated. This suggests that not only GDNF and NRTN but also PSPN might promote survival of precursor cells during ENS development. In summary, we report for the first time the association of PSPN gene with HSCR and confirm the involvement of NRTN in the disease, with the identification of novel variants in those genes. Our results suggest that the biological consequence of the mutations NTRN F127L and PSPN R91C would be a reduction in the activation of RET-dependent signaling pathways, leading to a defect in the proliferation, migration, and/or differentiation process of neural crest cells within the developing gut and thus to the typical aganglionosis of the HSCR phenotype.


PLOS ONE | 2012

Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients

Berta Luzón-Toro; Ana Torroglosa; Rocío Núñez-Torres; María Valle Enguix-Riego; Raquel M. Fernández; Juan Carlos de Agustín; Guillermo Antiñolo; Salud Borrego

Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.


PLOS ONE | 2013

Mutational Spectrum of Semaphorin 3A and Semaphorin 3D Genes in Spanish Hirschsprung patients

Berta Luzón-Toro; Raquel M. Fernández; Ana Torroglosa; Juan Carlos de Agustín; Cristina Méndez-Vidal; Dolores Isabel Segura; Guillermo Antiñolo; Salud Borrego

Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic colon segment and functional intestinal obstruction. The RET proto-oncogene is the major gene associated to HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. In addition, many other genes have been described to be associated with this pathology, including the semaphorins class III genes SEMA3A (7p12.1) and SEMA3D (7q21.11) through SNP array analyses and by next-generation sequencing technologies. Semaphorins are guidance cues for developing neurons implicated in the axonal projections and in the determination of the migratory pathway for neural-crest derived neural precursors during enteric nervous system development. In addition, it has been described that increased SEMA3A expression may be a risk factor for HSCR through the upregulation of the gene in the aganglionic smooth muscle layer of the colon in HSCR patients. Here we present the results of a comprehensive analysis of SEMA3A and SEMA3D in a series of 200 Spanish HSCR patients by the mutational screening of its coding sequence, which has led to find a number of potentially deleterious variants. RET mutations have been also detected in some of those patients carrying SEMAs variants. We have evaluated the A131T-SEMA3A, S598G-SEMA3A and E198K-SEMA3D mutations using colon tissue sections of these patients by immunohistochemistry. All mutants presented increased protein expression in smooth muscle layer of ganglionic segments. Moreover, A131T-SEMA3A also maintained higher protein levels in the aganglionic muscle layers. These findings strongly suggest that these mutants have a pathogenic effect on the disease. Furthermore, because of their coexistence with RET mutations, our data substantiate the additive genetic model proposed for this rare disorder and further support the association of SEMAs genes with HSCR.


PLOS ONE | 2011

Expression of PROKR1 and PROKR2 in Human Enteric Neural Precursor Cells and Identification of Sequence Variants Suggest a Role in HSCR

Macarena Ruiz-Ferrer; Ana Torroglosa; Rocío Núñez-Torres; Juan Carlos de Agustín; Guillermo Antiñolo; Salud Borrego

Background The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprungs disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS. Principal Findings In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function. Conclusions Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR.


Genetics in Medicine | 2014

Involvement of DNMT3B in the pathogenesis of Hirschsprung disease and its possible role as a regulator of neurogenesis in the human enteric nervous system

Ana Torroglosa; María Valle Enguix-Riego; Raquel M. Fernández; Francisco José Román-Rodríguez; María José Moya-Jiménez; Juan Carlos de Agustín; Guillermo Antiñolo; Salud Borrego

Purpose:Hirschsprung disease (OMIM 142623) is a neurocristopathy attributed to a failure of cell proliferation or migration and/or failure of the enteric precursors along the gut to differentiate during embryonic development. Although some genes involved in this pathology are well characterized, many aspects remain poorly understood. In this study, we aimed to identify novel genes implicated in the pathogenesis of Hirschsprung disease.Methods:We compared the expression patterns of genes involved in human stem cell pluripotency between enteric precursors from controls and Hirschsprung disease patients. We further evaluated the role of DNMT3B in the context of Hirschsprung disease by inmunocytochemistry, global DNA methylation assays, and mutational screening.Results:Seven differentially expressed genes were identified. We focused on DNMT3B, which encodes a DNA methyltransferase that performs de novo DNA methylation during embryonic development. DNMT3B mutational analysis in our Hirschsprung disease series revealed the presence of potentially pathogenic mutations (p.Gly25Arg, p.Arg190Cys, and p.Gly198Trp).Conclusion:DNMT3B may be regulating enteric nervous system development through DNA methylation in the neural crest cells, suggesting that aberrant methylation patterns could have a relevant role in Hirschsprung disease. Moreover, the synergistic effect of mutations in both DNMT3B and other Hirschsprung disease–related genes may be contributing to a more severe phenotype in our Hirschsprung disease patients.Genet Med 16 9, 703–710.


Scientific Reports | 2015

Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease.

Berta Luzón-Toro; Hongsheng Gui; Macarena Ruiz-Ferrer; Clara S. Tang; Raquel M. Fernández; Pak-Chung Sham; Ana Torroglosa; Paul Kwong Hang Tam; Laura Espino-Paisán; Stacey S. Cherny; Marta Bleda; María Valle Enguix-Riego; Joaquín Dopazo; Guillermo Antiñolo; Maria-Mercè Garcia-Barceló; Salud Borrego

Hirschsprung disease (HSCR; OMIM 142623) is a developmental disorder characterized by aganglionosis along variable lengths of the distal gastrointestinal tract, which results in intestinal obstruction. Interactions among known HSCR genes and/or unknown disease susceptibility loci lead to variable severity of phenotype. Neither linkage nor genome-wide association studies have efficiently contributed to completely dissect the genetic pathways underlying this complex genetic disorder. We have performed whole exome sequencing of 16 HSCR patients from 8 unrelated families with SOLID platform. Variants shared by affected relatives were validated by Sanger sequencing. We searched for genes recurrently mutated across families. Only variations in the FAT3 gene were significantly enriched in five families. Within-family analysis identified compound heterozygotes for AHNAK and several genes (N = 23) with heterozygous variants that co-segregated with the phenotype. Network and pathway analyses facilitated the discovery of polygenic inheritance involving FAT3, HSCR known genes and their gene partners. Altogether, our approach has facilitated the detection of more than one damaging variant in biologically plausible genes that could jointly contribute to the phenotype. Our data may contribute to the understanding of the complex interactions that occur during enteric nervous system development and the etiopathology of familial HSCR.


BMC Medical Genomics | 2015

Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas

Berta Luzón-Toro; Marta Bleda; Elena Navarro; Luz Garcia-Alonso; Macarena Ruiz-Ferrer; Ignacio Medina; Marta Martín-Sánchez; Cristina Yenyxe Gonzalez; Raquel M. Fernández; Ana Torroglosa; Guillermo Antiñolo; Joaquín Dopazo; Salud Borrego

BackgroundThe molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk.MethodsWe carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease.ResultsWe have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression.ConclusionsOverall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC.


Orphanet Journal of Rare Diseases | 2012

Four new loci associations discovered by pathway-based and network analyses of the genome-wide variability profile of Hirschsprung’s disease

Raquel M. Fernández; Marta Bleda; Rocío Núñez-Torres; Ignacio Medina; Berta Luzón-Toro; Luz Garcia-Alonso; Ana Torroglosa; Martina Marbá; María Valle Enguix-Riego; David Montaner; Guillermo Antiñolo; Joaquín Dopazo; Salud Borrego

Finding gene associations in rare diseases is frequently hampered by the reduced numbers of patients accessible. Conventional gene-based association tests rely on the availability of large cohorts, which constitutes a serious limitation for its application in this scenario. To overcome this problem we have used here a combined strategy in which a pathway-based analysis (PBA) has been initially conducted to prioritize candidate genes in a Spanish cohort of 53 trios of short-segment Hirschsprung’s disease. Candidate genes have been further validated in an independent population of 106 trios. The study revealed a strong association of 11 gene ontology (GO) modules related to signal transduction and its regulation, enteric nervous system (ENS) formation and other HSCR-related processes. Among the preselected candidates, a total of 4 loci, RASGEF1A, IQGAP2, DLC1 and CHRNA7, related to signal transduction and migration processes, were found to be significantly associated to HSCR. Network analysis also confirms their involvement in the network of already known disease genes. This approach, based on the study of functionally-related gene sets, requires of lower sample sizes and opens new opportunities for the study of rare diseases.


Scientific Reports | 2017

Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease

Leticia Villalba-Benito; Ana Torroglosa; Raquel M. Fernández; Macarena Ruiz-Ferrer; María José Moya-Jiménez; Guillermo Antiñolo; Salud Borrego

Hirschsprung disease (HSCR) is attributed to a failure of neural crest cells (NCCs) to migrate, proliferate, differentiate and/or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. ENS formation is the result from a specific gene expression pattern regulated by epigenetic events, such DNA methylation by the DNA methyltransferases (DNMTs), among other mechanisms. Specifically, DNMT3b de novo methyltransferase is associated with NCCs development and has been shown to be implicated in ENS formation and in HSCR. Aiming to elucidate the specific mechanism underlying the DNMT3b role in such processes, we have performed a chromatin immunoprecipitation coupled with massively parallel sequencing analysis to identify the DNMT3B target genes in enteric precursor cells (EPCs) from mice. Moreover, the expression patterns of those target genes have been analyzed in human EPCs from HSCR patients in comparison with controls. Additionally, we have carried out a search of rare variants in those genes in a HSCR series. Through this approach we found 9 genes showing a significantly different expression level in both groups. Therefore, those genes may have a role in the proper human ENS formation and a failure in their expression pattern might contribute to this pathology.


Scientific Reports | 2016

Identification of different mechanisms leading to PAX6 down-regulation as potential events contributing to the onset of Hirschsprung disease.

María Valle Enguix-Riego; Ana Torroglosa; Raquel M. Fernández; María José Moya-Jiménez; Juan Carlos de Agustín; Guillermo Antiñolo; Salud Borrego

Hirschsprung disease (HSCR) is attributed to a failure of neural crest derived cells to migrate, proliferate, differentiate or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. This process requires a wide and complex variety of molecules and signaling pathways which are activated by transcription factors. In an effort to better understand the etiology of HSCR, we have designed a study to identify new transcription factors participating in different stages of the colonization process. A differential expression study has been performed on a set of transcription factors using Neurosphere-like bodies from both HSCR and control patients. Differential expression levels were found for CDYL, MEIS1, STAT3 and PAX6. A significantly lower expression level for PAX6 in HSCR patients, would suit with the finding of an over-representation of the larger tandem (AC)m(AG)n repeats within the PAX6 promoter in HSCR patients, with the subsequent loss of protein P300 binding. Alternatively, PAX6 is a target for DNMT3B-dependant methylation, a process already proposed as a mechanism with a role in HSCR. Such decrease in PAX6 expression may influence in the proper function of signaling pathways involved in ENS with the confluence of additional genetic factors to the manifestation of HSCR phenotype.

Collaboration


Dive into the Ana Torroglosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos de Agustín

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Marta Bleda

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Rocío Núñez-Torres

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge