Ana Traven
Monash University, Clayton campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Traven.
Trends in Cell Biology | 2011
Tara Quenault; Trevor Lithgow; Ana Traven
The eukaryotic family of RNA-binding proteins termed PUF (Pumilio and FBF) is known for its roles in cell division, differentiation and development. The best-characterized function of PUFs is as posttranscriptional repressors. Recent studies have indicated that PUFs can also activate gene expression. Moreover, it is becoming clear that PUFs facilitate mRNA localization for spatial control of expression. Here, we review the emerging concept of PUF proteins as versatile posttranscriptional regulators. We discuss how the functions of PUFs as repressors and mRNA targeting factors could be integrated by focusing on Puf3 and Puf6 from yeast and propose a model for how the roles of Puf3 in mRNA targeting to the mitochondria and mRNA repression might promote cotranslational import into mitochondria and mitochondrial biogenesis.
EMBO Reports | 2006
Ana Traven; Branka Jeličić; Mary Sopta
During the past two decades, the yeast Gal4 protein has been used as a model for studying transcriptional activation in eukaryotes. Many of the properties of transcriptional regulation first demonstrated for Gal4 have since been shown to be reiterated in the function of several other eukaryotic transcriptional regulators. Technological advances based on the transcriptional properties of this factor—such as the two‐hybrid technology and Gal4‐inducible systems for controlled gene expression—have had far‐reaching influences in fields beyond transcription. In this review, we provide an updated account of Gal4 function, including data from new technologies that have been recently applied to the study of the GAL network.
Mbio | 2014
Nathalie Uwamahoro; Jiyoti Verma-Gaur; Hsin-Hui Shen; Yue Qu; Rowena S. Lewis; Jingxiong Lu; Keith R. Bambery; Seth L. Masters; James E. Vince; Thomas Naderer; Ana Traven
ABSTRACT The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection. IMPORTANCE Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae. Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.
Eukaryotic Cell | 2011
Miguel Shingu-Vazquez; Ana Traven
ABSTRACT Recently, mitochondria have been identified as important contributors to the virulence and drug tolerance of human fungal pathogens. In different scenarios, either hypo- or hypervirulence can result from changes in mitochondrial function. Similarly, specific mitochondrial mutations lead to either sensitivity or resistance to antifungal drugs. Here, we provide a synthesis of this emerging field, proposing that mitochondrial function in membrane lipid homeostasis is the common denominator underlying the observed effects of mitochondria in drug tolerance (both sensitivity and resistance). We discuss how the contrasting effects of mitochondrial dysfunction on fungal drug tolerance and virulence could be explained and the potential for targeting mitochondrial factors for future antifungal drug development.
Biomacromolecules | 2013
Katherine E. S. Locock; Thomas D. Michl; Jules D. P. Valentin; Krasimir Vasilev; John D. Hayball; Yue Qu; Ana Traven; Hans J. Griesser; Laurence Meagher; Matthias Haeussler
We have synthesized a series of copolymers containing both positively charged (amine, guanidine) and hydrophobic side chains (amphiphilic antimicrobial peptide mimics). To investigate the structure-activity relationships of these polymers, low polydispersity polymethacrylates of varying but uniform molecular weight and composition were synthesized, using a reversible addition-fragmentation chain transfer (RAFT) approach. In a facile second reaction, pendant amine groups were converted to guanidines, allowing for direct comparison of cation structure on activity and toxicity. The guanidine copolymers were much more active against Staphylococcus epidermidis and Candida albicans compared to the amine analogues. Activity against Staphylococcus epidermidis in the presence of fetal bovine serum was only maintained for guanidine copolymers. Selectivity for bacterial over mammalian cells was assessed using hemolytic and hemagglutination toxicity assays. Guanidine copolymers of low to moderate molecular weight and hydrophobicity had high antimicrobial activity with low toxicity. Optimum properties appear to be a balance between charge density, hydrophobic character, and polymer chain length. In conclusion, a suite of guanidine copolymers has been identified that represent a new class of antimicrobial polymers with high potency and low toxicity.
Molecular Microbiology | 2011
Michael J. Dagley; Ian E. Gentle; Traude H. Beilharz; Filomena Pettolino; Julianne T. Djordjevic; Tricia L. Lo; Nathalie Uwamahoro; Thusitha Rupasinghe; Dedreja L. Tull; Malcolm J. McConville; Cécile Beaurepaire; André Nantel; Trevor Lithgow; Aaron P. Mitchell; Ana Traven
The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post‐transcriptional gene regulators to cell wall integrity in C. albicans is unknown. We show that the C. albicans Ccr4‐Pop2 mRNA deadenylase, a regulator of mRNA stability and translation, is required for cell wall integrity. The ccr4/pop2 mutants display reduced wall β‐glucans and sensitivity to the echinocandin caspofungin. Moreover, the deadenylase mutants are compromised for filamentation and virulence. We demonstrate that defective cell walls in the ccr4/pop2 mutants are linked to dysfunctional mitochondria and phospholipid imbalance. To further understand mitochondrial function in cell wall integrity, we screened a Saccharomyces cerevisiae collection of mitochondrial mutants. We identify several mitochondrial proteins required for caspofungin tolerance and find a connection between mitochondrial phospholipid homeostasis and caspofungin sensitivity. We focus on the mitochondrial outer membrane SAM complex subunit Sam37, demonstrating that it is required for both trafficking of phospholipids between the ER and mitochondria and cell wall integrity. Moreover, in C. albicans also Sam37 is essential for caspofungin tolerance. Our study provides the basis for an integrative view of mitochondrial function in fungal cell wall biogenesis and resistance to echinocandin antifungal drugs.
Antimicrobial Agents and Chemotherapy | 2013
Brigitte M. E. Hayes; Mark R. Bleackley; Jennifer L. Wiltshire; Marilyn A. Anderson; Ana Traven; Nicole L. van der Weerden
ABSTRACT In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.
Polymer Chemistry | 2014
Thomas D. Michl; Katherine E. S. Locock; Natalie E. Stevens; John D. Hayball; Krasimir Vasilev; Almar Postma; Yue Qu; Ana Traven; Matthias Haeussler; Laurence Meagher; Hans J. Griesser
Antimicrobial polymers as mimics of natural antimicrobial peptides are emerging as an alternative to classic antibiotics due to their potency, selectivity and lower susceptibility to resistance. The key chemical aspects necessary to confer high activity and selectivity to the polymer chain composition are largely known. However, little attention has been paid to how end-groups affect the overall biological activity. Here we report the use of RAFT polymerization to obtain eight well-defined cationic methacrylate polymers which bear either amine (PA1–4) or guanidine (PG1–4) pendant groups, while systematically varying the R- and Z-RAFT end-groups. These polymers were assessed in haemotoxicity assays as well as antimicrobial testing against clinically relevant pathogens; such as a vigorously biofilm forming strain of Staphylococcus epidermidis (S. epidermidis) and a vancomycin and methicillin resistant strain of Staphylococcus aureus (VISA) as well as the opportunistic fungus Candida albicans (C. albicans). The R-group was found to dominate the measured toxicity of polymers. Replacement of the anionic cyanovaleric acid R-group (PA1) with the neutral isobutyronitrile (PA3) led to over a 20 fold increase in the haemolytic activity of the polymers. The Z-group, however, was found to have more influence on the antimicrobial activity of the polymers against both VISA and C. albicans, whereby polymers with a long, lipophilic dodecylsulfanyl Z-group (PA1) were found to be more potent than those with either an ethylsulfanyl or no ZCS2-group. These results indicate that chemical control over the end-groups is a key element for achieving the desired high biological activity and selectivity, particularly when low molecular weights are required for maximum antibacterial activity.
PLOS Genetics | 2012
Nathalie Uwamahoro; Yue Qu; Branka Jeličić; Tricia L. Lo; Cécile Beaurepaire; Farkad Bantun; Tara Quenault; Peter R. Boag; Georg Ramm; Judy Callaghan; Traude H. Beilharz; André Nantel; Anton Y. Peleg; Ana Traven
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Fems Yeast Research | 2015
Richard Calderone; Dongmei Li; Ana Traven
The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy.
Collaboration
Dive into the Ana Traven's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs