Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Velic is active.

Publication


Featured researches published by Ana Velic.


Journal of Molecular Medicine | 2008

Mechanisms of angiotensin II signaling on cytoskeleton of podocytes

Hsiang-Hao Hsu; Sigrid Hoffmann; Nicole Endlich; Ana Velic; Albrecht Schwab; Thomas Weide; Eberhard Schlatter; Hermann Pavenstädt

Podocytes are significant in establishing the glomerular filtration barrier. Sustained rennin–angiotensin system (RAS) activation is crucial in the pathogenesis of podocyte injury and causes proteinuria. This study demonstrates that angiotensin II (Ang II) caused a reactive oxygen species (ROS)-dependent rearrangement of cortical F-actin and a migratory phenotype switch in cultured mouse podocytes with stable Ang II type 1 receptor (AT1R) expression. Activated small GTPase Rac-1 and phosphorylated ezrin/radixin/moesin (ERM) proteins provoked Ang II-induced F-actin cytoskeletal remodeling. This work also shows increased expression of Rac-1 and phosphorylated ERM proteins in cultured podocytes, and in glomeruli of podocyte-specific AT1R transgenic rats (Neph-hAT1 TGRs). The free radical scavenger DMTU eliminated Ang II-induced cell migration, ERM protein phosphorylation and cortical F-actin remodeling, indicating that ROS mediates the influence of Rac-1 on podocyte AT1R signaling. Heparin, a potent G-coupled protein kinase 2 inhibitor, was found to abolish ERM protein phosphorylation and cortical F-actin ring formation in Ang II-treated podocytes, indicating that phosphorylated ERM proteins are the cytoskeletal effector in AT1R signaling. Moreover, Ang II stimulation triggered down-regulation of α actinin-4 and reduced focal adhesion expression in podocytes. Signaling inhibitor assay of Ang II-treated podocytes reveals that Rac-1, RhoA, and F-actin reorganization were involved in expressional regulation of α actinin-4 in AT1R signaling. With persistent RAS activation, the Ang II-induced phenotype shifts from being dynamically stable to adaptively migratory, which may eventually exhaust podocytes with a high actin cytoskeletal turnover, causing podocyte depletion and focal segmental glomerulosclerosis.


Journal of The American Society of Nephrology | 2009

The Calcium-Sensing Receptor Promotes Urinary Acidification to Prevent Nephrolithiasis

K.Y. Renkema; Ana Velic; H.B.P.M. Dijkman; S.A.J. Verkaart; J.W.C.M. van der Kemp; Marta Nowik; K. Timmermans; A. Doucet; Carsten A. Wagner; R.J.M. Bindels; Joost G. J. Hoenderop

Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their significant polyuria and urinary acidification. Here, we investigated the mechanisms linking hypercalciuria with these adaptive mechanisms. Exposure of dissected mouse outer medullary collecting ducts to high (5.0 mM) extracellular Ca(2+) stimulated H(+)-ATPase activity. In TRPV5(-/-) mice, activation of the renal Ca(2+)-sensing receptor promoted H(+)-ATPase-mediated H(+) excretion and downregulation of aquaporin 2, leading to urinary acidification and polyuria, respectively. Gene ablation of the collecting duct-specific B1 subunit of H(+)-ATPase in TRPV5(-/-) mice abolished the enhanced urinary acidification, which resulted in severe tubular precipitations of Ca(2+)-phosphate in the renal medulla. In conclusion, activation of Ca(2+)-sensing receptor by increased luminal Ca(2+) leads to urinary acidification and polyuria. These beneficial adaptations facilitate the excretion of large amounts of soluble Ca(2+), which is crucial to prevent the formation of kidney stones.


Circulation | 2005

Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice.

Ana Kilic; Ana Velic; Leon J. De Windt; Larissa Fabritz; Melanie Voss; Danuta Mitko; Melanie Zwiener; Hideo Baba; Martin van Eickels; Eberhard Schlatter; Michaela Kuhn

Background— Atrial natriuretic peptide (ANP), through its guanylyl cyclase-A (GC-A) receptor, not only is critically involved in the endocrine regulation of arterial blood pressure but also locally moderates cardiomyocyte growth. The mechanisms underlying the antihypertrophic effects of ANP remain largely uncharacterized. We examined the contribution of the Na+/H+ exchanger NHE-1 to cardiac remodeling in GC-A–deficient (GC-A−/−) mice. Methods and Results— Fluorometric measurements in isolated adult cardiomyocytes demonstrated that cardiac hypertrophy in GC-A−/− mice was associated with enhanced NHE-1 activity, alkalinization of intracellular pH, and increased Ca2+ levels. Chronic treatment of GC-A−/− mice with the NHE-1 inhibitor cariporide normalized cardiomyocyte pH and Ca2+ levels and regressed cardiac hypertrophy and fibrosis, despite persistent arterial hypertension. To characterize the molecular pathways driving cardiac hypertrophy in GC-A−/− mice, we evaluated the activity of 4 prohypertrophic signaling pathways: the mitogen-activated protein kinases (MAPK), the serine-threonine kinase Akt, calcineurin, and Ca2+/calmodulin-dependent kinase II (CaMKII). The results demonstrate that all 4 pathways were activated in GC-A−/− mice, but only CaMKII and Akt activity regressed during reversal of the hypertrophic phenotype by cariporide treatment. In contrast, the MAPK and calcineurin/NFAT signaling pathways remained activated during regression of hypertrophy. Conclusions— On the basis of these results, we conclude that the ANP/GC-A system moderates the cardiac growth response to pressure overload by preventing excessive activation of NHE-1 and subsequent increases in cardiomyocyte intracellular pH, Ca2+, and CaMKII as well as Akt activity.


Science | 2015

Regulation of breathing by CO2 requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons

Natasha N. Kumar; Ana Velic; Jorge Soliz; Yingtang Shi; Keyong Li; Sheng Wang; Janelle L. Weaver; Josh Sen; Stephen B. G. Abbott; Roman M. Lazarenko; Marie-Gabrielle Ludwig; Edward Perez-Reyes; Nilufar Mohebbi; Carla Bettoni; Max Gassmann; Thomas Suply; Klaus Seuwen; Patrice G. Guyenet; Carsten A. Wagner; Douglas A. Bayliss

Receptor in the brain controls breathing Control of breathing in mammals depends primarily not on sensing oxygen, but rather on detecting concentrations of carbon dioxide in the blood. Failure of this system can cause potentially deadly sleep apnias. Taking a hint from insects, which use a heterotrimeric guanine nucleotide–binding protein-coupled receptor (GPCR) to sense carbon dioxide, Kumar et al. demonstrate that the GPCR GPR4 is essential to control breathing in mice. GPR4 senses protons generated by the formation of carbonic acid in the blood and works with a pH-sensitive potassium channel called TASK-2 in a set of brain cells that control breathing. Science, this issue p. 1255 A G protein–coupled receptor in the brain controls respiration. Blood gas and tissue pH regulation depend on the ability of the brain to sense CO2 and/or H+ and alter breathing appropriately, a homeostatic process called central respiratory chemosensitivity. We show that selective expression of the proton-activated receptor GPR4 in chemosensory neurons of the mouse retrotrapezoid nucleus (RTN) is required for CO2-stimulated breathing. Genetic deletion of GPR4 disrupted acidosis-dependent activation of RTN neurons, increased apnea frequency, and blunted ventilatory responses to CO2. Reintroduction of GPR4 into RTN neurons restored CO2-dependent RTN neuronal activation and rescued the ventilatory phenotype. Additional elimination of TASK-2 (K2P5), a pH-sensitive K+ channel expressed in RTN neurons, essentially abolished the ventilatory response to CO2. The data identify GPR4 and TASK-2 as distinct, parallel, and essential central mediators of respiratory chemosensitivity.


Journal of The American Society of Nephrology | 2007

Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct.

Florina Rothenberger; Ana Velic; Paul A. Stehberger; Jana Kovacikova; Carsten A. Wagner

Final urinary acidification is mediated by the action of vacuolar H(+)-ATPases expressed in acid-secretory type A intercalated cells (A-IC) in the collecting duct. Angiotensin II (AngII) has profound effects on renal acid-base transport in the proximal tubule, distal tubule, and collecting duct. This study investigated the effects on vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts. AngII (10 nM) stimulated concanamycin-sensitive vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts via AT(1) receptors, which were also detected immunohistochemically in A-IC. AngII increased intracellular Ca(2+) levels transiently. Chelation of intracellular Ca(2+) with BAPTA and depletion of endoplasmic reticulum Ca(2+) stores prevented the stimulatory effect on H(+)-ATPase activity. The effect of AngII on H(+)-ATPase activity was abolished by inhibitors of small G proteins and phospholipase C, by blockers of Ca(2+)-dependent and -independent isoforms of protein kinase C and extracellular signal-regulated kinase 1/2. Disruption of the microtubular network and cleavage of cellubrevin attenuated the stimulation. Finally, AngII failed to stimulate residual vacuolar H(+)-ATPase activity in A-IC from mice that were deficient for the B1 subunit of the vacuolar H(+)-ATPase. Thus, AngII presents a potent stimulus for vacuolar H(+)-ATPase activity in outer medullary collecting duct IC and requires trafficking of stimulatory proteins or vacuolar H(+)-ATPases. The B1 subunit is indispensable for the stimulation by AngII, and its importance for stimulation of vacuolar H(+)-ATPase activity may contribute to the inappropriate urinary acidification that is seen in patients who have distal renal tubular acidosis and mutations in this subunit.


Cellular Physiology and Biochemistry | 2012

The Proton-activated G Protein Coupled Receptor OGR1 Acutely Regulates the Activity of Epithelial Proton Transport Proteins

Nilufar Mohebbi; Chahira Benabbas; Solange Vidal; Arezoo Daryadel; Soline Bourgeois; Ana Velic; Marie-Gabrielle Ludwig; Klaus Seuwen; Carsten A. Wagner

The Ovarian cancer G protein-coupled Receptor 1 (OGR1; GPR68) is proton-sensitive in the pH range of 6.8 - 7.8. However, its physiological function is not defined to date. OGR1 signals via inositol trisphosphate and intracellular calcium, albeit downstream events are unclear. To elucidate OGR1 function further, we transfected HEK293 cells with active OGR1 receptor or a mutant lacking 5 histidine residues (H5Phe-OGR1). An acute switch of extracellular pH from 8 to 7.1 (10 nmol/l vs 90 nmol/l protons) stimulated NHE and H+-ATPase activity in OGR1-transfected cells, but not in H5Phe-OGR1-transfected cells. ZnCl2 and CuCl2 that both inhibit OGR1 reduced the stimulatory effect. The activity was blocked by chelerythrine, whereas the ERK1/2 inhibitor PD 098059 had no inhibitory effect. OGR1 activation increased intracellular calcium in transfected HEK293 cells. We next isolated proximal tubules from kidneys of wild-type and OGR1-deficient mice and measured the effect of extracellular pH on NHE activity in vitro. Deletion of OGR1 affected the pH-dependent proton extrusion, however, in the opposite direction as expected from cell culture experiments. Upregulated expression of the pH-sensitive kinase Pyk2 in OGR1 KO mouse proximal tubule cells may compensate for the loss of OGR1. Thus, we present the first evidence that OGR1 modulates the activity of two major plasma membrane proton transport systems. OGR1 may be involved in the regulation of plasma membrane transport proteins and intra- and/or extracellular pH.


American Journal of Transplantation | 2005

Acute Rejection After Rat Renal Transplantation Leads to Downregulation of Na + and Water Channels in the Collecting Duct

Ana Velic; Gert Gabriëls; Jochen R. Hirsch; Rita Schröter; Bayram Edemir; Sandra Paasche; Eberhard Schlatter

Renal transplantation is associated with alterations of tubular functions and of the renin–angiotensin–aldosterone system. The underlying cellular and molecular mechanisms are unclear. We used an allogeneic rat renal transplantation model of acute rejection with and without immunosuppression by cyclosporine A (CsA) and a syngeneic model as control. Uninephrectomized Lewis or Lewis–Brown‐Norway (LBN) rats received a kidney from LBN‐rats. Renal transporters and receptors were analyzed by immunohistochemistry, semiquantitative RT‐PCR and Western‐blot analysis. Intracellular Na+ was analyzed microfluorimetrically in isolated cortical collecting ducts. mRNA expression and function of the epithelial Na+‐channel (ENaC) and mRNA and protein expression of the water‐channel AQP2 were downregulated in transplanted kidneys undergoing rejection. Expression of the serum‐ and glucocorticoid‐kinase (Sgk1) was decreased and that of the ubiquitin–protein ligase Nedd4‐2 was increased. These changes were absent under CsA‐therapy and in syngeneic model. Expression and function of the Na+–K+‐ATPase, expression of the secretory K+‐channel and of the mineralocorticoid receptor remained unchanged. Reduced ENaC function is likely due to decreased Sgk1‐ and increased Nedd4‐2 mRNA expression leading to reduced ENaC expression in the membrane. These acute downregulations of ENaC and AQP2 may be triggered to reduce energy consumption in the distal nephron to protect the kidney immediately after transplantation.


Journal of The American Society of Nephrology | 2004

Renal Transplantation Modulates Expression and Function of Receptors and Transporters of Rat Proximal Tubules

Ana Velic; Jochen R. Hirsch; Jasmin Bartel; Regina Thomas; Rita Schröter; Heike Stegemann; Bayram Edemir; Christian August; Eberhard Schlatter; Gert Gabriëls

Kidney transplantation often leads to disturbances of solute and volume maintenance in humans. To investigate underlying mechanisms, expression and function of renal transporters and receptors of the proximal tubule (PT) were analyzed in an acute rejection model of rat kidney transplantation. Semiquantitative RT-PCR and Western blot, histology, immunohistochemistry, and microfluorometry were performed on whole kidneys and isolated PT. With acute rejection, Na+/H+-exchanger type-3 (NHE-3) was markedly downregulated. Na+-HCO(3)(-)-cotransporter (NBC-1) and Na+-glucose transporter type-2 (SGLT2) were upregulated after transplantation. Expressions of Na+/H+-exchanger type-1 (NHE-1), Na+/K+-ATPase (NKA), angiotensin II (AngII) receptor (AT-1), or natriuretic peptide receptor (GC-A) were unaltered. Microfluorometric analyses of intracellular pH, Na+, and Ca2+ demonstrated a decrease in NHE-3 function and AngII-mediated stimulation of NHE-3. AngII-mediated inhibition of NHE-1 and function of all other transporters tested remained unaltered. Function of AT-1 and GC-A were unaffected. Reduced expression of NHE-3 was also confirmed by semiquantitative immunohistochemistry. These findings suggest that expression and function of transmembrane proteins involved in Na+-transport after transplantation and rejection is specifically modulated. The local renin-angiotensin-system is apparently not altered. Downregulation of NHE-3 may be a protective mechanism occurring in the graft.


BMC Immunology | 2007

Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells

Michael Walch; Sonja Latinovic-Golic; Ana Velic; Hanna Sundstrom; Claudia Dumrese; Carsten A. Wagner; Peter Groscurth; Urs Ziegler

BackgroundCytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC.ResultsWe found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy.ConclusionThe results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux.


Pflügers Archiv: European Journal of Physiology | 2008

Protective role of NHE-3 inhibition in rat renal transplantation undergoing acute rejection.

Stefan Reuter; Ana Velic; Bayram Edemir; Rita Schröter; Hermann Pavenstädt; Gert Gabriëls; Markus Bleich; Eberhard Schlatter

Acute rejection in renal transplantation disturbs solute and volume maintenance in humans accompanied by delayed graft function and poor prognosis. We recently reported that decreased expression and function of Na+/H+ exchanger type 3 (NHE-3) in proximal tubules and epithelial Na+ channels and aquaporin 2 in collecting ducts are major mechanisms involved in Na+ and water imbalances shortly after transplantation in rat undergoing acute rejection. We performed kidney transplantations in rats with bilaterally nephrectomized recipients with acute rejection and, in addition, systemically administered a specific inhibitor of NHE-3 (NHE-I). NHE inhibition in acute renal failure was shown to improve tubular function and recovery. The aim of this therapy was to reduce energy consumption of the graft and preserve NHE-3 function. Imbalances in electrolyte excretion declined in NHE-I-treated animals and NHE-3 activity was preserved. Observed NHE-I-dependent changes in electrolyte excretion, polyuria, and reduced protein reabsorption in the acute postoperative phase are predictors of favorable graft outcome in humans.

Collaboration


Dive into the Ana Velic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen R. Hirsch

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge