Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Villegas-Mendez is active.

Publication


Featured researches published by Ana Villegas-Mendez.


Journal of Immunology | 2012

IFN-γ–Producing CD4+ T Cells Promote Experimental Cerebral Malaria by Modulating CD8+ T Cell Accumulation within the Brain

Ana Villegas-Mendez; Rachel Greig; J. Brian de Souza; Emily Gwyer Findlay; Jason S. Stumhofer; Julius C. R. Hafalla; Daniel G. Blount; Christopher A. Hunter; Eleanor M. Riley; Kevin N. Couper

It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4+ and CD8+ T cells. Importantly, we demonstrate that IFN-γ–producing CD4+ T cells, but not innate or CD8+ T cells, can promote the development of ECM in normally resistant IFN-γ−/− mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4+ T cells accumulate within the spleen, lung, and brain of IFN-γ−/− mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ−/− CD8+ T cells within the brain. Depletion of endogenous IFN-γ−/− CD8+ T cells abrogates the ability of wild-type CD4+ T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4+ T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8+ T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ–producing CD4+ T cells promote the development of ECM during P. berghei ANKA infection.


PLOS Pathogens | 2013

IL-27 receptor signalling restricts the formation of pathogenic, terminally differentiated Th1 cells during malaria infection by repressing IL-12 dependent signals.

Ana Villegas-Mendez; J. Brian de Souza; Seen Wai Lavelle; Emily Gwyer Findlay; Nico van Rooijen; Christiaan J. M. Saris; Christopher A. Hunter; Eleanor M. Riley; Kevin N. Couper

The IL-27R, WSX-1, is required to limit IFN-γ production by effector CD4+ T cells in a number of different inflammatory conditions but the molecular basis of WSX-1-mediated regulation of Th1 responses in vivo during infection has not been investigated in detail. In this study we demonstrate that WSX-1 signalling suppresses the development of pathogenic, terminally differentiated (KLRG-1+) Th1 cells during malaria infection and establishes a restrictive threshold to constrain the emergent Th1 response. Importantly, we show that WSX-1 regulates cell-intrinsic responsiveness to IL-12 and IL-2, but the fate of the effector CD4+ T cell pool during malaria infection is controlled primarily through IL-12 dependent signals. Finally, we show that WSX-1 regulates Th1 cell terminal differentiation during malaria infection through IL-10 and Foxp3 independent mechanisms; the kinetics and magnitude of the Th1 response, and the degree of Th1 cell terminal differentiation, were comparable in WT, IL-10R1−/− and IL-10−/− mice and the numbers and phenotype of Foxp3+ cells were largely unaltered in WSX-1−/− mice during infection. As expected, depletion of Foxp3+ cells did not enhance Th1 cell polarisation or terminal differentiation during malaria infection. Our results significantly expand our understanding of how IL-27 regulates Th1 responses in vivo during inflammatory conditions and establishes WSX-1 as a critical and non-redundant regulator of the emergent Th1 effector response during malaria infection.


Journal of Immunology | 2011

Heterogeneous and tissue-specific regulation of effector T cell responses by IFN-gamma during Plasmodium berghei ANKA infection.

Ana Villegas-Mendez; J. Brian de Souza; Linda Murungi; Julius C. R. Hafalla; Rachel Greig; Eleanor M. Riley; Kevin N. Couper

IFN-γ and T cells are both required for the development of experimental cerebral malaria during Plasmodium berghei ANKA infection. Surprisingly, however, the role of IFN-γ in shaping the effector CD4+ and CD8+ T cell response during this infection has not been examined in detail. To address this, we have compared the effector T cell responses in wild-type and IFN-γ−/− mice during P. berghei ANKA infection. The expansion of splenic CD4+ and CD8+ T cells during P. berghei ANKA infection was unaffected by the absence of IFN-γ, but the contraction phase of the T cell response was significantly attenuated. Splenic T cell activation and effector function were essentially normal in IFN-γ−/− mice; however, the migration to, and accumulation of, effector CD4+ and CD8+ T cells in the lung, liver, and brain was altered in IFN-γ−/− mice. Interestingly, activation and accumulation of T cells in various nonlymphoid organs was differently affected by lack of IFN-γ, suggesting that IFN-γ influences T cell effector function to varying levels in different anatomical locations. Importantly, control of splenic T cell numbers during P. berghei ANKA infection depended on active IFN-γ–dependent environmental signals—leading to T cell apoptosis—rather than upon intrinsic alterations in T cell programming. To our knowledge, this is the first study to fully investigate the role of IFN-γ in modulating T cell function during P. berghei ANKA infection and reveals that IFN-γ is required for efficient contraction of the pool of activated T cells.


PLOS Pathogens | 2015

Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria.

Phillip J. Stewart-Hutchinson; Patrick Strangward; Durga Bhavani Dandamudi; Jonathan A. Coles; Ana Villegas-Mendez; Julio Gallego-Delgado; Nico van Rooijen; Egor Zindy; Ana Rodriguez; James M. Brewer; Kevin N. Couper; Michael L. Dustin

There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome.


Journal of Immunology | 2013

IL-27 Receptor Signaling Regulates CD4+ T Cell Chemotactic Responses during Infection

Emily Gwyer Findlay; Ana Villegas-Mendez; J. Brian de Souza; Colette A. Inkson; Christiaan J. M. Saris; Christopher A. Hunter; Eleanor M. Riley; Kevin N. Couper

IL-27 exerts pleiotropic suppressive effects on naive and effector T cell populations during infection and inflammation. Surprisingly, however, the role of IL-27 in restricting or shaping effector CD4+ T cell chemotactic responses, as a mechanism to reduce T cell–dependent tissue inflammation, is unknown. In this study, using Plasmodium berghei NK65 as a model of a systemic, proinflammatory infection, we demonstrate that IL-27R signaling represses chemotaxis of infection-derived splenic CD4+ T cells in response to the CCR5 ligands, CCL4 and CCL5. Consistent with these observations, CCR5 was expressed on significantly higher frequencies of splenic CD4+ T cells from malaria-infected, IL-27R–deficient (WSX-1−/−) mice than from infected wild-type mice. We find that IL-27 signaling suppresses splenic CD4+ T cell CCR5-dependent chemotactic responses during infection by restricting CCR5 expression on CD4+ T cell subtypes, including Th1 cells, and also by controlling the overall composition of the CD4+ T cell compartment. Diminution of the Th1 response in infected WSX-1−/− mice in vivo by neutralization of IL-12p40 attenuated CCR5 expression by infection-derived CD4+ T cells and also reduced splenic CD4+ T cell chemotaxis toward CCL4 and CCL5. These data reveal a previously unappreciated role for IL-27 in modulating CD4+ T cell chemotactic pathways during infection, which is related to its capacity to repress Th1 effector cell development. Thus, IL-27 appears to be a key cytokine that limits the CCR5-CCL4/CCL5 axis during inflammatory settings.


Infection and Immunity | 2014

IL-27 Receptor Signaling Regulates Memory CD4+ T Cell Populations and Suppresses Rapid Inflammatory Responses during Secondary Malaria Infection

Emily Gwyer Findlay; Ana Villegas-Mendez; Noelle O'Regan; J. Brian de Souza; Lisa M Grady; Christiaan J. M. Saris; Eleanor M. Riley; Kevin N. Couper

ABSTRACT Interleukin-27 (IL-27) is known to control primary CD4+ T cell responses during a variety of different infections, but its role in regulating memory CD4+ T responses has not been investigated in any model. In this study, we have examined the functional importance of IL-27 receptor (IL-27R) signaling in regulating the formation and maintenance of memory CD4+ T cells following malaria infection and in controlling their subsequent reactivation during secondary parasite challenge. We demonstrate that although the primary effector/memory CD4+ T cell response was greater in IL-27R-deficient (WSX-1−/−) mice following Plasmodium berghei NK65 infection than in wild-type (WT) mice, there were no significant differences in the size of the maintained memory CD4+ T population(s) at 20 weeks postinfection in the spleen, liver, or bone marrow of WSX-1−/− mice compared with WT mice. However, the composition of the memory CD4+ T cell pool was slightly altered in WSX-1−/− mice following clearance of primary malaria infection, with elevated numbers of late effector memory CD4+ T cells in the spleen and liver and increased production of IL-2 in the spleen. Crucially, WSX-1−/− mice displayed significantly enhanced parasite control compared with WT mice following rechallenge with homologous malaria parasites. Improved parasite control in WSX-1−/− mice during secondary infection was associated with elevated systemic production of multiple inflammatory innate and adaptive cytokines and extremely rapid proliferation of antigen-experienced T cells in the liver. These data are the first to demonstrate that IL-27R signaling plays a role in regulating the magnitude and quality of secondary immune responses during rechallenge infections.


Infection and Immunity | 2016

Parasite-Specific CD4+ IFN-γ+ IL-10+ T Cells Distribute within Both Lymphoid and Nonlymphoid Compartments and Are Controlled Systemically by Interleukin-27 and ICOS during Blood-Stage Malaria Infection

Ana Villegas-Mendez; Colette A. Inkson; Patrick Strangward; J. Brian de Souza; Kevin N. Couper

ABSTRACT Immune-mediated pathology in interleukin-10 (IL-10)-deficient mice during blood-stage malaria infection typically manifests in nonlymphoid organs, such as the liver and lung. Thus, it is critical to define the cellular sources of IL-10 in these sensitive nonlymphoid compartments during infection. Moreover, it is important to determine if IL-10 production is controlled through conserved or disparate molecular programs in distinct anatomical locations during malaria infection, as this may enable spatiotemporal tuning of the regulatory immune response. In this study, using dual gamma interferon (IFN-γ)–yellow fluorescent protein (YFP) and IL-10–green fluorescent protein (GFP) reporter mice, we show that CD4+ YFP+ T cells are the major source of IL-10 in both lymphoid and nonlymphoid compartments throughout the course of blood-stage Plasmodium yoelii infection. Mature splenic CD4+ YFP+ GFP+ T cells, which preferentially expressed high levels of CCR5, were capable of migrating to and seeding the nonlymphoid tissues, indicating that the systemically distributed host-protective cells have a common developmental history. Despite exhibiting comparable phenotypes, CD4+ YFP+ GFP+ T cells from the liver and lung produced significantly larger quantities of IL-10 than their splenic counterparts, showing that the CD4+ YFP+ GFP+ T cells exert graded functions in distinct tissue locations during infection. Unexpectedly, given the unique environmental conditions within discrete nonlymphoid and lymphoid organs, we show that IL-10 production by CD4+ YFP+ T cells is controlled systemically during malaria infection through IL-27 receptor signaling that is supported after CD4+ T cell priming by ICOS signaling. The results in this study substantially improve our understanding of the systemic IL-10 response to malaria infection, particularly within sensitive nonlymphoid organs.


Journal of Immunology | 2016

Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection

Ana Villegas-Mendez; Colette A. Inkson; Patrick Strangward; Kevin N. Couper

CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ–yellow fluorescent protein (YFP) and IL-10–GFP dual reporter mice, we show that primary malaria infection–induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell–derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP− T cell–derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10–producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections.


PLOS ONE | 2013

WSX-1 Signalling Inhibits CD4+ T Cell Migration to the Liver during Malaria Infection by Repressing Chemokine-Independent Pathways

Ana Villegas-Mendez; Emily Gwyer Findlay; J. Brian de Souza; Lisa M Grady; Christiaan J. M. Saris; Thomas E. Lane; Eleanor M. Riley; Kevin N. Couper

IL-27 is an important and non-redundant regulator of effector T cell accumulation in non-lymphoid tissues during infection. Using malaria as a model systemic pro-inflammatory infection, we demonstrate that the aberrant accumulation of CD4+ T cells in the liver of infected IL27R−/− (WSX-1−/−) mice is a result of differences in cellular recruitment, rather than changes in T cell proliferation or cell death. We show that IL-27 both inhibits the migratory capacity of infection-derived CD4+ T cells towards infection-derived liver cells, but also suppresses the production of soluble liver-derived mediator(s) that direct CD4+ T cell movement towards the inflamed tissue. Although CCL4 and CCL5 expression was higher in livers of infected WSX-1−/− mice than infected WT mice, and hepatic CD4+ T cells from WSX-1−/− mice expressed higher levels of CCR5 than cells from WT mice, migration of CD4+ T cells to the liver of WSX-1−/− mice during infection was not controlled by chemokine (R) signalling. However, anti-IL-12p40 treatment reduced migration of CD4+ T cells towards infection-derived liver cells, primarily by abrogating the hepatotropic migratory capacity of T cells, rather than diminishing soluble tissue-derived migratory signals. These results indicate that IL-27R signalling restricts CD4+ T cell accumulation within the liver during infection primarily by suppressing T cell chemotaxis, which may be linked to its capacity to repress Th1 differentiation, as well as by inhibiting the production of soluble, tissue-derived chemotaxins.


Infection and Immunity | 2017

Gamma Interferon Mediates Experimental Cerebral Malaria by Signaling within Both the Hematopoietic and Nonhematopoietic Compartments

Ana Villegas-Mendez; Patrick Strangward; Ivana Rajkovic; Vinko Tosevski; Ruth Forman; Werner Müller; Kevin N. Couper

ABSTRACT Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.

Collaboration


Dive into the Ana Villegas-Mendez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Hunter

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Colette A. Inkson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M Grady

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge