Anabela Romano
University of the Algarve
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anabela Romano.
Cellulose | 2012
Bruno Medronho; Anabela Romano; Maria G. Miguel; Lars Stigsson; Björn Lindman
Despite being the world’s most abundant natural polymer and one of the most studied, cellulose is still challenging researchers. Cellulose is known to be insoluble in water and in many organic solvents, but can be dissolved in a number of solvents of intermediate properties, like N-methylmorpholine N-oxide and ionic liquids which, apparently, are not related. It can also be dissolved in water at extreme pHs, in particular if a cosolute of intermediate polarity is added. The insolubility in water is often referred to strong intermolecular hydrogen bonding between cellulose molecules. Revisiting some fundamental polymer physicochemical aspects (i.e. intermolecular interactions) a different picture is now revealed: cellulose is significantly amphiphilic and hydrophobic interactions are important to understand its solubility pattern. In this paper we try to provide a basis for developing novel solvents for cellulose based on a critical analysis of the intermolecular interactions involved and mechanisms of dissolution.
Plant Cell Tissue and Organ Culture | 1995
Anabela Romano; C. Noronha; Maria Amélia Martins-Loução
The influences of carbon sources, fructose, glucose, sorbitol and sucrose on shoot proliferation and in vitro rooting of cork oak (Quercus suber L.) were compared at a wide range of concentrations (1–6%, w/v). The highest number of shoots occurred on glucose-containing medium. Nevertheless, we have chosen 3% sucrose which induced a similar rate of proliferation but favoured shoot elongation, permitting an effectively higher number of shoots during transfers. Sorbitol and autoclaved fructose did not stimulate shoot proliferation. Adventitious root formation was strongly dependent on carbohydrate supply. Sorbitol and autoclaved fructose were completely ineffectively on rooting induction. Glucose was the most effective carbon source on rooting promotion followed by sucrose and filter-sterilized fructose. The rooting response induced by fructose was dependent on the sterilizing procedure. The number of adventitious roots produced per shoot increased with increasing glucose and sucrose concentration. The content of reducing sugars in leaves of proliferation cultures and in leaves and roots of rooted plantlets was more dependent on carbon concentration than on glucose or sucrose supplement. The results presented here show that carbohydrate requirements during cork oak micropropagation depend upon the phase of culture. Sucrose (3%) and glucose (4%) were the best carbon sources respectively during proliferation and rooting phases.
Biotechnology Advances | 2013
Sandra Gonçalves; Anabela Romano
Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products.
Journal of Agricultural and Food Chemistry | 2011
Luísa Custódio; Eliana Fernandes; Ana Luísa Escapa; Alba Fajardo; Rosa Aligué; Fernando Albericio; N.R. Neng; J.M.F. Nogueira; Anabela Romano
Extracts from fruit pulps of six female cultivars and two hermaphrodite Portuguese carob trees [(Ceratonia siliqua L., Fabaceae)] exhibited strong antioxidant activity and were rich in phenolic compounds. The extracts decreased the viability of different human cancer cell lines on a dose- and time-dependent manner. Gender and cultivar significantly influenced the chemical content and the biological activities of the extracts. Extracts from hermaphrodite trees had a higher content of phenolic compounds, and exhibited higher antioxidant and cytotoxic activities. Among females, cv. Aida had the highest radical scavenging activity and total content of phenolics, Mulata the highest capacity to inhibit lipid oxidation and Gasparinha the strongest cytotoxic activity on HeLa cells. The decrease in cell viability was associated with apoptosis on HeLa and MDA-MB-231 lines. (+)-Catechin and gallic acid (GA) were the main compounds identified in the extracts, and GA contributed to the antioxidant activity. Our results show that the antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar, and provide new knowledge about the advantages of hermaphrodite trees over female cultivars, namely, as a source of compounds with biological interest, which may represent an increase of their agronomic interest.
Food Chemistry | 2011
Patrícia Costa; Sandra Gonçalves; Paula B. Andrade; Patrícia Valentão; Anabela Romano
In this research, the total phenolic content of a Lavandula viridis methanol extract was evaluated and the phenolic identification and quantification was assessed. Rosmarinic acid and luteolin-7-O-glucoside were the two major compounds identified by HPLC-DAD (ca. 39 and 13g/kg, respectively). This extract showed a strong antioxidant activity in ORAC (2858.39±70.97μmolTE/gextract) and TEAC (967.18±22.57μmolTE/gextract) assays, as well as Fe(2+) chelating and OH scavenging abilities. Furthermore, the extract prevented Fe(2+)-induced lipid peroxidation, by reducing MDA content in mouse brains (in vitro), and inhibited AChE and BChE activities both in vitro and in vivo. These findings demonstrate that the methanol extract from L. viridis is a potential source of natural antioxidants and cholinesterase inhibitors.
Photosynthetica | 2011
Maria Leonor Osório; Júlio Osório; A. C. Vieira; Sandra Gonçalves; Anabela Romano
Predicted future climatic changes for the Mediterranean region give additional importance to the study of photooxidative stress in local economic species subjected to combined drought and high-temperature conditions. Under this context, the impact of these stresses on photosynthesis, energy partitioning, and membrane lipids, as well as the potential ability to attenuate oxidative damage, were investigated in Ceratonia siliqua L. Two thermal regimes (LT: 25/18°C; HT: 32/21°C) and three soil water conditions (control, water stress, and rewetting) were considered. HT exacerbated the adverse effects of water shortage on photosynthetic rates (PN) and PSII function. The decrease in PN was 33% at LT whereas at HT it was 84%. In spite of this, the electron transport rate (ETR) was not affected, which points to an increased allocation of reductants to sinks other than CO2 assimilation. Under LT conditions, water stress had no significant effects on yield of PSII photochemistry (ΦPSII) and yields of regulated (ΦNPQ) and nonregulated (ΦNO) energy dissipation. Conversely, drought induced a significant decrease of ΦPSII and a concomitant increase of ΦNO in HT plants, thereby favouring the overproduction of reactive oxygen species (ROS). Moreover, signs of lipid peroxidation damage were detected in HT plants, in which drought caused an increase of 40% in malondialdehyde (MDA) content. Concurrently, a marked increase in proline content was observed, while the activities of catalase (CAT) and ascorbate peroxidase (APX) were unaffected. Despite the generation of a moderate oxidative stress response, C. siliqua revealed a great capability for photosynthetic recovery 36 h after rewatering, which suggests that the species can cope with predicted climate change.
Food Chemistry | 2012
Patrícia Costa; Sandra Gonçalves; Patrícia Valentão; Paula B. Andrade; Natacha Coelho; Anabela Romano
We compared the phenolic metabolites and antioxidant activities of Thymus lotocephalus G. López & R. Morales wild plants and in vitro cultures using different extraction solvents. HPLC-DAD analysis allowed the identification and quantification of phenolic (caffeic and rosmarinic) acids and flavones (luteolin and apigenin) in extracts from both sources. The in vitro cultures accumulated large amounts of rosmarinic acid. However, extracts from both sources were able to neutralise free radicals in different test systems (TEAC and ORAC assays), to form complexes with Fe(2+) and to protect mouse brains against Fe(2+)-induced lipid peroxidation. The solvent significantly influenced the phenolic content and antioxidant activity of the extracts, water/ethanol being the most efficient for the extraction of antioxidant phytochemicals. We conclude that in vitro cultures of T. lotocephalus represent a promising alternative for the production of valuable natural antioxidants and an efficient tool for the in vitro biosynthesis of rosmarinic acid, therefore avoiding the need to exploit populations of wild plants.
Plant Foods for Human Nutrition | 2011
Luísa Custódio; Ana Luísa Escapa; Eliana Fernandes; Alba Fajardo; Rosa Aligué; Fernando Albericio; Nuno Neng; J.M.F. Nogueira; Anabela Romano
This work aimed to evaluate the phytochemical content and to determine the antioxidant and cytotoxic activities of methanol extracts of the carob tree (Ceratonia siliqua L.) germ flour. The extracts were rich in phenolic compounds, had considerable antioxidant activity, and reduced the viability of cervical (HeLa) cancer cells. The chemical content and the biological activities of the extracts were significantly affected by gender and cultivar. Female cultivar Galhosa had the highest levels of phenolic compounds, and the highest antioxidant activity. Extracts from the hermaphrodite trees and from the female cultivars Galhosa and Costela/Canela exhibited the highest cytotoxic activity. The most abundant compound was theophylline. The phenolic content was correlated to both antioxidant and cytotoxic activities. Our findings provide new knowledge about the health implications of consuming food supplemented with carob germ flour.
Biologia Plantarum | 2007
Sandra Gonçalves; Anabela Romano
The present paper reports a protocol for minimum growth conservation of Drosophyllum lusitanicum (L.) Link. in vitro. Double-node cuttings were maintained for 4, 8 and 12 months at 5 or 25 °C in the dark. The effects of sucrose either alone at 5, 20, 30, 40 and 60 g dm−3 or at 20, 40 and 60 g dm−3 in combination with 20 g dm−3 mannitol, on survival and post-storage shoot multiplication efficiency were investigated. The cultures could effectively be conserved under minimum growth at 5 °C for 8 months on Murashige and Skoog’s medium supplemented with 60 g dm−3 sucrose, 20 g dm−3 mannitol and 0.91 µM zeatin. Following extended conservation, the cultures could be successfully regenerated into new shoots, and they were morphologically similar to those of non-stored controls.
Journal of Chemical Ecology | 2006
Luísa Custódio; Hugo Serra; J.M.F. Nogueira; Sandra Gonçalves; Anabela Romano
The volatiles emitted by fresh whole flowers and isolated flower organs of male, female, and hermaphrodite carob trees (Ceratonia siliqua L.; Leguminosae) were analyzed by headspace solid-phase microextraction followed by capillary gas chromatography and mass spectrometry. The headspace of carob flowers is mainly constituted of high amounts of monoterpenes and sesquiterpenes, and more than 25 compounds were identified. The gender and cultivar affected both the qualitative profile and the relative abundances of the volatiles of whole flowers and isolated floral organs. Linalool and its derivatives (cis-linalool furan oxide, 2,2,6-trimethyl-3-keto-6-vinyltetrahydropyran, cis-linalool pyran oxide, and trans-linalool furan oxide), α-pinene, and α-farnesene were the dominant volatiles. Female flowers had a higher diversity of volatile compounds than males and hermaphrodites, but a lower abundance of the major ones. Similarly, the floral scent of female flowers of cv. Mulata had a higher content of volatiles but a lower abundance of the major ones, when compared to cv. Galhosa. In each of the three gender types of flowers, the nectary disks seemed to be the major source of volatiles.