Anabella Ivancich
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anabella Ivancich.
Journal of Biological Chemistry | 2006
Abdulsamie Hanano; Michel Burcklen; Martine Flenet; Anabella Ivancich; Mathilde Louwagie; Jérôme Garin; Elizabeth Blee
A growing body of evidence indicates that phytooxylipins play important roles in plant defense responses. However, many enzymes involved in the biosynthesis of these metabolites are still elusive. We have purified one of these enzymes, the peroxygenase (PXG), from oat microsomes and lipid droplets. It is an integral membrane protein requiring detergent for its solubilization. Proteinase K digestion showed that PXG is probably deeply buried in lipid droplets or microsomes with only about 2 kDa at the C-terminal region accessible to proteolytic digestion. Sequencing of the N terminus of the purified protein showed that PXG had no sequence similarity with either a peroxidase or a cytochrome P450 but, rather, with caleosins, i.e. calcium-binding proteins. In agreement with this finding, we demonstrated that recombinant thale cress and rice caleosins, expressed in yeast, catalyze hydroperoxide-dependent mono-oxygenation reactions that are characteristic of PXG. Calcium was also found to be crucial for peroxygenase activity, whereas phosphorylation of the protein had no impact on catalysis. Site-directed mutagenesis studies revealed that PXG catalytic activity is dependent on two highly conserved histidines, the 9 GHz EPR spectrum being consistent with a high spin pentacoordinated ferric heme.
Journal of the American Chemical Society | 2003
Anabella Ivancich; Christa Jakopitsch; Markus Auer; and Sun Un; Christian Obinger
Catalase-peroxidases are bifunctional heme enzymes with a high structural homology to peroxidases from prokaryotic origin and a catalatic activity comparable to monofunctional catalases. These unique features of catalase-peroxidases make them good systems to study and understand the role of alternative electron pathways both in catalases and peroxidases. In particular, it is of interest to study the poorly understood role of tyrosyl and tryptophanyl radicals as alternative cofactors in the catalytic cycle of catalases and peroxidases. In this work, we have used a powerful combination of multifrequency EPR spectroscopy, isotopic labeling of tryptophan and tyrosine residues, and site-directed mutagenesis to unequivocally identify the reactive intermediates formed by the wild-type Synechocystis PCC6803 catalase-peroxidase. Selected variants of the heme distal and proximal sides of the Synechocystis enzyme were investigated. Variants on the aromatic residues of the short stretch located relatively close to the heme and spanning the distal and proximal sides were also investigated. In the wild-type enzyme, the EPR signal of the catalases and peroxidases (typical) Compound I intermediate [Fe(IV)=O por.+] was observed. Two protein-based radical intermediates were also detected and identified as a Tyr. and a Trp. . The site of Trp. is proposed to be Trp 106, a residue belonging to the conserved short stretch in catalase-peroxidases and located at a 7-8 A distance to the heme propionate groups. An extensive hydrogen-bonding network on the heme distal side, involving Trp122, His123, Arg119, seven structural waters, the heme 6-propionate group, and Trp106, is proposed to have a key role on the formation of the tryptophanyl radical. We used high-field EPR spectroscopy (95-285 GHz) to resolve the g-anisotropy of the protein-based radicals in Synechocystis catalase-peroxidase. The broad gx component of the HF EPR spectrum of the Tyr. in Synechocystis catalase-peroxidase was consistent with a distributed electropositive protein environment to the tyrosyl radical.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Andrew T. Smith; Wendy A. Doyle; Pierre Dorlet; Anabella Ivancich
The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of gx = 2.0035(5), gy = 2.0027(5), and gz = 2.0022(1)] was formed after the [Fe(IV)=O Por•+] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179•] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por•+] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171•, for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.
Journal of the American Chemical Society | 2009
Julie Colin; Ben Wiseman; Jacek Switala; Peter C. Loewen; Anabella Ivancich
We have characterized the reactive intermediates of the peroxidase-like reaction of Bulkholderia pseudomallei KatG using multifrequency EPR spectroscopy. The aim was to investigate the putative role of tryptophanyl radicals as alternative intermediates to the [Fe(IV)=O Por(*+)] species or as short-lived species involved in superexchange-coupled pathways between redox cofactors. Three distinct sites for the formation of radical intermediates, Trp330, Trp139 and Trp153, were identified using single, double and triple variants of Bulkholderia pseudomallei KatG. The proximal Trp330 is the site for a radical in magnetic interaction with the ferryl heme iron [Fe(IV)=O Trp(*+)], formed at the expense of a short-lived [Fe(IV)=O Por(*+)] species as in the cases of Mycobacterium tuberculosis KatG and cytochrome c peroxidase. Formation of the Trp153 radical at a site close to the enzyme surface crucially depends on the integrity of the H-bonding network of the heme distal side, that includes Trp95, the radical site in the Synechocystis KatG. Accordingly, the extended H-bonding network and Trp94 provide an electron transfer pathway between Trp153 and the heme. The distal tryptophan (Trp111) being part of the KatG-specific adduct required for the catalase-like activity, is involved in facilitating electron transfer for the formation of the Trp139 radical. We propose a comprehensive description of the role of specific Trp residues that takes into account not only the apparent differences in sites for the Trp(*) intermediates in other catalase-peroxidases but also the similar cases observed in monofunctional peroxidases.
EMBO Reports | 2005
Xavier Carpena; Ben Wiseman; Taweewat Deemagarn; Rahul Singh; Jacek Switala; Anabella Ivancich; Ignacio Fita; Peter C. Loewen
The catalase reaction of catalase‐peroxidases involves catalase‐specific features built into a peroxidase core. An arginine, 20 Å from the active‐site heme, acts as a molecular switch moving between two conformations, one that activates heme oxidation and one that activates oxoferryl heme reduction by H2O2, facilitating the catalatic pathway in a peroxidase. The influence of the arginine is imparted to the heme through its association with or dissociation from a tyrosinate that modulates reactivity through a Met‐Tyr‐Trp crosslinked adduct and a π electron interaction of the heme with the adduct Trp.
Proteins | 2006
Taweewat Deemagarn; Ben Wiseman; Xavier Carpena; Anabella Ivancich; Ignacio Fita; Peter C. Loewen
Five residues in the multifunctional catalase–peroxidase KatG of Burkholderia pesudomallei are essential for catalase, but not peroxidase, activity. Asp141 is the only one of these catalase‐specific residues not related with the covalent adduct found in KatGs that when replaced with a nonacidic residue reduces catalase activity to 5% of native levels. Replacing the nearby catalytic residue Arg108 causes a reduction in catalase activity to 35% of native levels, whereas a variant with both Asp141 and Arg108 replaced exhibits near normal catalase activity (82% of native), suggesting a synergism in the roles of the two residues in support of catalase activity in the enzyme. Among the Asp141 variants, D141E is unique in retaining normal catalase activity but with modified kinetics, suggesting more favorable compound I formation and less favorable compound I reduction. The crystal structure of the D141E variant has been determined at 1.8‐Å resolution, revealing that the carboxylate of Glu141 is moved only slightly compared with Asp141, but retains its hydrogen bond interaction with the main chain nitrogen of Ile237. In contrast, the low temperature ferric Electron Paramagnetic Resonance spectra of the D141A, R108A, and R108A/D141A variants are consistent with modifications of the water matrix and/or the relative positioning of the distal residue side chains. Such changes explain the reduction in catalase activity in all but the double variant R108A/D141A. Two pathways of hydrogen bonded solvent lead from the entrance channel into the heme active site, one running between Asp141 and Arg108 and the second between Asp141 and the main chain atoms of residues 237–239. It is proposed that binding of substrate H2O2 to Asp141 and Arg108 controls H2O2 access to the heme active site, thereby modulating the catalase reaction. Proteins 2007.
Biochemistry | 2008
Alistair J. Fielding; Rahul Singh; Barbara Boscolo; Peter C. Loewen; Elena Maria Ghibaudi; Anabella Ivancich
We have combined the information obtained from rapid-scan electronic absorption spectrophotometry and multifrequency (9-295 GHz) electron paramagnetic resonance (EPR) spectroscopy to unequivocally determine the electronic nature of the intermediates in milk lactoperoxidase as a function of pH and to monitor their reactivity with organic substrates selected by their different accessibilities to the heme site. The aim was to address the question of the putative catalytic role of the protein-based radicals. This experimental approach allowed us to discriminate between the protein-based radical intermediates and [Fe(IV)=O] species, as well as to directly detect the oxidation products by EPR. The advantageous resolution of the g anisotropy of the Tyr (*) EPR spectrum at high fields showed that the tyrosine of the [Fe(IV)=O Tyr (*)] intermediate has an electropositive and pH-dependent microenvironment [g(x) value of 2.0077(0) at pH >or= 8.0 and 2.0066(2) at 4.0 <or= pH <or= 7.5] possibly related to the radical stability and function. Two types of organic molecules (small aromatic vs bulkier substrates) allowed us to distinguish different mechanisms for substrate oxidation. [Fe(IV)=O Por (*+)] is the oxidizing species of benzohydroxamic acid, o-dianisidine, and o-anisidine via a heme-edge reaction and of mitoxantrone via a long-range electron transfer (favored at pH 8) not involving the tyrosyl radical, the formation of which competed with the substrate oxidation at pH 5. In contrast, the very efficient reaction with ABTS at pH 5 is consistent with [Fe(IV)=O Tyr (*)] being the oxidizing species. Accordingly, the identification of the ABTS binding site by X-ray crystallography may be a valuable tool in rational drug design.
Biochemistry | 2015
Arianna I. Celis; Zachary Geeraerts; David Ngmenterebo; Melodie M. Machovina; Richard C. Kurker; Kumar Rajakumar; Anabella Ivancich; Kenton R. Rodgers; Gudrun S. Lukat-Rodgers; Jennifer L. DuBois
Chlorite dismutases (Clds) convert chlorite to O2 and Cl–, stabilizing heme in the presence of strong oxidants and forming the O=O bond with high efficiency. The enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of their active site structure with efficient O2-producing Clds, even though they have a truncated monomeric structure, exist as a dimer rather than a pentamer, and come from Gram-negative bacteria without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make O2 and may serve an in vivo antioxidant function. Here, it is demonstrated that it degrades chlorite with limited turnovers relative to the respiratory Clds, in part because of the loss of hypochlorous acid from the active site and destruction of the heme. The observation of hypochlorous acid, the expected leaving group accompanying transfer of an oxygen atom to the ferric heme, is consistent with the more open, solvent-exposed heme environment predicted by spectroscopic measurements and inferred from the crystal structures of related proteins. KpCld is more susceptible to oxidative degradation under turnover conditions than the well-characterized Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the presence of chlorate relative to a Δcld knockout strain, specifically under nitrate-respiring conditions. This suggests that a physiological function of KpCld may be detoxification of endogenously produced chlorite.
Biochimica et Biophysica Acta | 1994
Anabella Ivancich; LászlóI. Horváth; Magdolna Droppa; Gábor Horváth; Tibor Farkas
Lipid-protein association in the chloroplast membrane and its various thylakoid fractions from higher plants, namely pea and maize, rich in Photosystem I (PSI) and Photosystem II (PSII), respectively, were studied using EPR spectroscopy of spin-labelled lipid molecules. All the EPR spectra consisted of two spectral components corresponding to bulk fluid lipids and solvation lipids motionally restricted at the hydrophobic surface of membrane proteins. Spin-labelled stearic acid and phosphatidylglycerol exhibited marked selectivity towards the supramolecular protein complexes of both PSI and PSII although to different extent. In addition, lipid-protein titration experiments are described for partially delipidated PSII-enriched membrane fractions of pea chloroplasts, incorporating unlabelled egg phosphatidylcholine prior to or after the incorporation of spin-labelled lipids. Two sets of solvation sites were resolved by timed labelling experiments and a significant result of these studies was that a well-defined population of solvation sites (approx. 100 mol lipids/820 kDa protein) was rapidly exchanged by laterally diffusing membrane lipids, while other solvation sites (approx. 50 mol lipids/820 kDa protein) were exchanged much slower or not exchanged at all.
Biochemistry | 2014
Kyle D. Miner; Thomas D. Pfister; Parisa Hosseinzadeh; Nadime Karaduman; Lynda J. Donald; Peter C. Loewen; Yi Lu; Anabella Ivancich
The location of the Trp radical and the catalytic function of the [Fe(IV)=O Trp191•+] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr radical(s) using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with multiple-site Trp/Tyr mutations in CcP. Two tyrosines, Tyr71 and Tyr236, were identified as those contributing primarily to the EPR spectrum of the tyrosyl radical, recorded at 9 and 285 GHz. The EPR characterization also showed that the heme distal-side Trp51 is involved in the intramolecular electron transfer between Tyr71 and the heme and that formation of Tyr71• and Tyr236• is independent of the [Fe(IV)=O Trp191•+] intermediate. Tyr71 is located in an optimal position to mediate the oxidation of substrates binding at a site, more than 20 Å from the heme, which has been reported recently in the crystal structures of CcP with bound guaicol and phenol [Murphy, E. J., et al. (2012) FEBS J. 279, 1632–1639]. The possibility of discriminating the radical intermediates by their EPR spectra allowed us to identify Tyr71• as the reactive species with the guaiacol substrate. Our assignment of the surface-exposed Tyr236 as the other radical site agrees well with previous studies based on MNP labeling and protein cross-linking [Tsaprailis, G., and English, A. M. (2003) JBIC, J. Biol. Inorg. Chem. 8, 248–255] and on its covalent modification upon reaction of W191G CcP with 2-aminotriazole [Musah, R. A., and Goodin, D. B. (1997) Biochemistry 36, 11665–11674]. Accordingly, while Tyr71 acts as a true reactive intermediate for the oxidation of certain small substrates that bind at a site remote from the heme, the surface-exposed Tyr236 would be more likely related to oxidative stress signaling, as previously proposed. Our findings reinforce the view that CcP is the monofunctional peroxidase that most closely resembles its ancestor enzymes, the catalase-peroxidases, in terms of the higher complexity of the peroxidase reaction [Colin, J., et al. (2009) J. Am. Chem. Soc. 131, 8557–8563]. The strategy used to identify the elusive Tyr radical sites in CcP may be applied to other heme enzymes containing a large number of Tyr and Trp residues and for which Tyr (or Trp) radicals have been proposed to be involved in their peroxidase or peroxidase-like reaction.