Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anahí Espíndola is active.

Publication


Featured researches published by Anahí Espíndola.


Evolutionary Applications | 2012

Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers

Malou Delplancke; Nadir Alvarez; Anahí Espíndola; Hélène Joly; Laure Benoit; Elise Brouck; Nils Arrigo

Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop‐to‐wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean.


Molecular Ecology | 2013

Evolutionary history of almond tree domestication in the Mediterranean basin.

Malou Delplancke; Nadir Alvarez; Laure Benoit; Anahí Espíndola; Hélène Joly; Samuel Neuenschwander; Nils Arrigo

Genetic diversity of contemporary domesticated species is shaped by both natural and human‐driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model‐based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human‐mediated dispersal of almond tree out of its centre of origin. Still, the detection of region‐specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.


Ecology Letters | 2017

Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination

Anikó Kovács-Hostyánszki; Anahí Espíndola; Adam J. Vanbergen; Josef Settele; Claire Kremen; Lynn V. Dicks

Abstract Worldwide, human appropriation of ecosystems is disrupting plant–pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi‐natural ecosystems while conventional land‐use intensification (e.g. industrial management of large‐scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm‐level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice.


PLOS ONE | 2011

Comparative phylogeography in a specific and obligate pollination antagonism.

Anahí Espíndola; Nadir Alvarez

In specific and obligate interactions the nature and abundance of a given species can have important effects on the survival and population dynamics of associated organisms. In a phylogeographic framework, we therefore expect that the fates of organisms interacting specifically are also tightly interrelated. Here we investigate such a scenario by analyzing the genetic structures of species interacting in an obligate plant-insect pollination lure-and-trap antagonism, involving Arum maculatum (Araceae) and its specific psychodid (Diptera) visitors Psychoda phalaenoides and Psycha grisescens. Because the interaction is asymmetric (i.e., only the plant depends on the insect), we expect the genetic structure of the plant to be related with the historical pollinator availability, yielding incongruent phylogeographic patterns between the interacting organisms. Using insect mtDNA sequences and plant AFLP genome fingerprinting, we inferred the large-scale phylogeographies of each species and the distribution of genetic diversities throughout the sampled range, and evaluated the congruence in their respective genetic structures using hierarchical analyses of molecular variances (AMOVA). Because the composition of pollinator species varies in Europe, we also examined its association with the spatial genetic structure of the plant. Our findings indicate that while the plant presents a spatially well-defined genetic structure, this is not the case in the insects. Patterns of genetic diversities also show dissimilar distributions among the three interacting species. Phylogeographic histories of the plant and its pollinating insects are thus not congruent, a result that would indicate that plant and insect lineages do not share the same glacial and postglacial histories. However, the genetic structure of the plant can, at least partially, be explained by the type of pollinators available at a regional scale. Differences in life-history traits of available pollinators might therefore have influenced the genetic structure of the plant, the dependent organism, in this antagonistic interaction.


Molecular Phylogenetics and Evolution | 2012

Ecological and historical drivers of diversification in the fly genus Chiastocheta Pokorny.

Anahí Espíndola; Sven Buerki; Nadir Alvarez

Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyrs groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.


Zoologica Scripta | 2012

Phylogenetic relationships in the subfamily Psychodinae (Diptera, Psychodidae)

Anahí Espíndola; Sven Buerki; Anouchka Jacquier; Jan Ježek; Nadir Alvarez

Espíndola, A., Buerki, S., Jacquier, A., Ježek, J. & Alvarez, N. (2012). Phylogenetic relationships in the subfamily Psychodinae (Diptera, Psychodidae). —Zoologica Scripta, 41, 489–498.


Proceedings of the Royal Society B: Biological Sciences | 2016

Identifying cryptic diversity with predictive phylogeography

Anahí Espíndola; Megan Ruffley; Megan L. Smith; Bryan C. Carstens; David C. Tank; Jack Sullivan

Identifying units of biological diversity is a major goal of organismal biology. An increasing literature has focused on the importance of cryptic diversity, defined as the presence of deeply diverged lineages within a single species. While most discoveries of cryptic lineages proceed on a taxon-by-taxon basis, rapid assessments of biodiversity are needed to inform conservation policy and decision-making. Here, we introduce a predictive framework for phylogeography that allows rapidly identifying cryptic diversity. Our approach proceeds by collecting environmental, taxonomic and genetic data from codistributed taxa with known phylogeographic histories. We define these taxa as a reference set, and categorize them as either harbouring or lacking cryptic diversity. We then build a random forest classifier that allows us to predict which other taxa endemic to the same biome are likely to contain cryptic diversity. We apply this framework to data from two sets of disjunct ecosystems known to harbour taxa with cryptic diversity: the mesic temperate forests of the Pacific Northwest of North America and the arid lands of Southwestern North America. The predictive approach presented here is accurate, with prediction accuracies placed between 65% and 98.79% depending of the ecosystem. This seems to indicate that our method can be successfully used to address ecosystem-level questions about cryptic diversity. Further, our application for the prediction of the cryptic/non-cryptic nature of unknown species is easily applicable and provides results that agree with recent discoveries from those systems. Our results demonstrate that the transition of phylogeography from a descriptive to a predictive discipline is possible and effective.


Arthropod-plant Interactions | 2012

Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies

Natacha Revel; Nadir Alvarez; Marc Gibernau; Anahí Espíndola

The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.


Molecular Ecology | 2017

Demographic model selection using random forests and the site frequency spectrum

Megan L. Smith; Megan Ruffley; Anahí Espíndola; David C. Tank; Jack Sullivan; Bryan C. Carstens

Phylogeographic data sets have grown from tens to thousands of loci in recent years, but extant statistical methods do not take full advantage of these large data sets. For example, approximate Bayesian computation (ABC) is a commonly used method for the explicit comparison of alternate demographic histories, but it is limited by the “curse of dimensionality” and issues related to the simulation and summarization of data when applied to next‐generation sequencing (NGS) data sets. We implement here several improvements to overcome these difficulties. We use a Random Forest (RF) classifier for model selection to circumvent the curse of dimensionality and apply a binned representation of the multidimensional site frequency spectrum (mSFS) to address issues related to the simulation and summarization of large SNP data sets. We evaluate the performance of these improvements using simulation and find low overall error rates (~7%). We then apply the approach to data from Haplotrema vancouverense, a land snail endemic to the Pacific Northwest of North America. Fifteen demographic models were compared, and our results support a model of recent dispersal from coastal to inland rainforests. Our results demonstrate that binning is an effective strategy for the construction of a mSFS and imply that the statistical power of RF when applied to demographic model selection is at least comparable to traditional ABC algorithms. Importantly, by combining these strategies, large sets of models with differing numbers of populations can be evaluated.


Nature Ecology and Evolution | 2018

Risks to pollinators and pollination from invasive alien species

Adam J. Vanbergen; Anahí Espíndola; Marcelo A. Aizen

Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making.Invasive species can affect pollination in various ways, including altered ecological networks, new disease threats and reduced nutrition. This Review assesses these threats and builds on the IPBES report on pollinators.

Collaboration


Dive into the Anahí Espíndola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Buerki

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Nils Arrigo

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Dubuis

University of Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge