Analía G. Karadayian
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Analía G. Karadayian.
Free Radical Biology and Medicine | 2011
Analía Czerniczyniec; Analía G. Karadayian; Juanita Bustamante; Rodolfo A. Cutrera; Silvia Lores-Arnaiz
Paraquat is a highly toxic quaternary nitrogen herbicide capable of increasing superoxide anion production. The aim of this research was to evaluate various behavioral changes and study cortical, hippocampal, and striatal mitochondrial function in an experimental model of paraquat toxicity in rats. Paraquat (10mg/kg ip) was administered weekly for a month. Anxiety-like behavior was evidenced in the paraquat-treated group as shown by a diminished time spent in, and fewer entries into, the open arms of an elevated-plus maze. Also, paraquat treatment induced a deficit in the sense of smell. In biochemical assays, NADH-cytochrome c reductase activity was significantly inhibited by 25 and 34% in cortical and striatal submitochondrial membranes, respectively. Striatal cytochrome oxidase activity was decreased by 24% after paraquat treatment. Also, cortical and striatal mitochondria showed 55 and 74% increased State 4 respiratory rates, respectively. Paraquat treatment decreased striatal State 3 oxygen consumption by 33%. Respiratory controls were markedly decreased in cortical and striatal mitochondria, indicating mitochondrial dysfunction after paraquat treatment, together with mitochondrial depolarization and increased hydrogen peroxide production rates. We demonstrate that paraquat induced alterations in nonmotor symptoms and cortical and striatal mitochondrial dysfunction.
Behavioural Brain Research | 2013
Analía G. Karadayian; María J. Busso; Carlos Feleder; Rodolfo A. Cutrera
Alcohol hangover is a temporary state described as the unpleasant next-day effects after binge-like drinking. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. Affective behavior is impaired during the acute phase of alcohol intoxication; however, no reports indicate if similar effects are observed during withdrawal. The aim of this work was to study the time-extension and possible fluctuations in affective behavior during a hangover episode. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8g/kg BW) (hangover group). Anxiety, fear-related behavior and despair phenotype were evaluated at a basal point (ZT0) and every 2h up to 20h after blood alcohol levels were close to zero (hangover onset). Also, anhedonia signs and pain perception disabilities were studied. Mice exhibited an increase in anxiety-like behavior during 4h and 14h after hangover onset when evaluated by the elevated-plus maze and open field test respectively (p<0.05). Fear-related behavior was detected in hangover animals by the increase of freezing and decrease of line crossings and rearing frequency during 16h after hangover onset (p<0.001). Depression signs were found in hangover mice during 14h (p<0.05). Hangover mice showed a significant decrease in pain perception when tested by tail immersion test at the beginning of hangover (p<0.05). Our findings demonstrate a time-extension between 14 and 16h for hangover affective impairments. This study shows the long lasting effects of hangover over the phase of ethanol intoxication.
Alcohol | 2012
Juanita Bustamante; Analía G. Karadayian; Silvia Lores-Arnaiz; Rodolfo A. Cutrera
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.
Behavioural Brain Research | 2013
Analía G. Karadayian; Rodolfo A. Cutrera
Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (p<0.001). Hangover mice exhibited a reduced motor performance during the next 16 h (p<0.01). Motor function was recovered 20 h after hangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (p<0.05). Moreover, mice suffering from a hangover, exhibited a significant decrease in neuromuscular strength during 16 h (p<0.001). Averaged speed and total distance traveled in the open field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (p<0.05). Our findings demonstrate a time-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover.
Neuroscience | 2015
Analía G. Karadayian; Juanita Bustamante; Analía Czerniczyniec; Paulina Lombardi; Rodolfo A. Cutrera; Silvia Lores-Arnaiz
Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. Male mice received a single i.p. injection of EtOH (3.8g/kg BW) or saline solution. Mitochondrial function was evaluated 6h after injection (AH onset). At the onset of AH, malate-glutamate and succinate-supported state 4 oxygen uptake was 2.3 and 1.9-fold increased leading to a reduction in respiratory control of 55% and 48% respectively, as compared with controls. Decreases of 38% and 16% were found in Complex I-III and IV activities. Complex II-III activity was not affected by AH. Mitochondrial membrane potential and mitochondrial permeability changes were evaluated by flow cytometry. Mitochondrial membrane potential and permeability were decreased by AH in cerebellum mitochondria. Together with this, AH induced a 25% increase in superoxide anion and a 92% increase in hydrogen peroxide production in cerebellum mitochondria. Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system.
Neuroscience | 2014
Analía G. Karadayian; Juanita Bustamante; Analía Czerniczyniec; Rodolfo A. Cutrera; Silvia Lores-Arnaiz
Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism.
Free Radical Biology and Medicine | 2017
Analía G. Karadayian; Gabriela Malanga; Analía Czerniczyniec; Paulina Lombardi; Juanita Bustamante; Silvia Lores-Arnaiz
Abstract Alcohol hangover (AH) is the pathophysiological state after a binge‐like drinking. We have previously demonstrated that AH induced bioenergetics impairments in a total fresh mitochondrial fraction in brain cortex and cerebellum. The aim of this work was to determine free radical production and antioxidant systems in non‐synaptic mitochondria and synaptosomes in control and hangover animals. Superoxide production was not modified in non‐synaptic mitochondria while a 17.5% increase was observed in synaptosomes. A similar response was observed for cardiolipin content as no changes were evidenced in non‐synaptic mitochondria while a 55% decrease in cardiolipin content was found in synaptosomes. Hydrogen peroxide production was 3‐fold increased in non‐synaptic mitochondria and 4‐fold increased in synaptosomes. In the presence of deprenyl, synaptosomal H2O2 production was 67% decreased in the AH condition. Hydrogen peroxide generation was not affected by deprenyl addition in non‐synaptic mitochondria from AH mice. MAO activity was 57% increased in non‐synaptic mitochondria and 3‐fold increased in synaptosomes. Catalase activity was 40% and 50% decreased in non‐synaptic mitochondria and synaptosomes, respectively. Superoxide dismutase was 60% decreased in non‐synaptic mitochondria and 80% increased in synaptosomal fractions. On the other hand, GSH (glutathione) content was 43% and 17% decreased in synaptosomes and cytosol. GSH‐related enzymes were mostly affected in synaptosomes fractions by AH condition. Acetylcholinesterase activity in synaptosomes was 11% increased due to AH. The present work reveals that AH provokes an imbalance in the cellular redox homeostasis mainly affecting mitochondria present in synaptic terminals. Graphical abstract Figure. No Caption available. HighlightsAlcohol hangover induces free radical production in brain cortex synaptosomes.Antioxidant enzyme activities decrease in non‐synaptic mitochondria and synaptosomes.Glutathione content and GSH‐related enzymes decrease in synaptosomes.Hangover provokes an imbalance in the cellular redox homeostasis.
Behavioural Brain Research | 2014
Analía G. Karadayian; Silvia Lores-Arnaiz; Rodolfo A. Cutrera
Alcohol hangover (AH) is a particular state after binge-like drinking. AH begins when ethanol is absent in plasma and is characterized by a cluster of physical and psychological symptoms. Alcohol disrupts circadian patterns of behavioral and physiological parameters; however, the involvement of circadian clock on the recovery of AH was not explored. Our aim was to study the effect of continuous darkness and the possible involvement of the circadian clock in the recovery time of neuromuscular impairment and anxiety related-behavior due to AH. Male Swiss mice were habituated to 12:12 L:D or continuous darkness. Each group was injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance and anxiety phenotype were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). A third group was subjected to a phase advance during which a hangover episode was induced and behavioral tests were carried out for each group of treatment and resynchronization day. Constant darkness resulted to be in a faster recovery of both motor and anxiety impairments in AH compared with the recovery pattern observed under normal light-dark conditions. Mice suffering from a phase shift exhibited behavioral disruptions due to both AH and phase advance. Results indicated that a synchronized circadian clock is necessary for an adequate recovery of alcohol hangover symptoms.
Journal of Neurochemistry | 2017
Silvia Lores-Arnaiz; Analía G. Karadayian; Alicia Gutnisky; Georgina Rodríguez de Lores Arnaiz
Neurotensin is known to inhibit neuronal Na+, K+‐ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, remains unknown. Here, we addressed this issue and found that the administration of low affinity neurotensin receptor (NTS2) antagonist, levocabastine (50 μg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I–IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 μM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis.
Journal of Bioenergetics and Biomembranes | 2016
Analía Czerniczyniec; Analía G. Karadayian; Juanita Bustamante; Silvia Lores-Arnaiz
Fil: Czerniczyniec, Analia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Bioquimica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquimica y Medicina Molecular; Argentina