Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anand C. Patel is active.

Publication


Featured researches published by Anand C. Patel.


Nature Medicine | 2008

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Edy Y. Kim; John T. Battaile; Anand C. Patel; Yingjian You; Eugene Agapov; Mitchell H. Grayson; Loralyn A. Benoit; Derek E. Byers; Yael G. Alevy; Jennifer Tucker; Suzanne Swanson; Rose M. Tidwell; Jeffrey W. Tyner; Mario Castro; Deepika Polineni; G. Alexander Patterson; Reto A. Schwendener; John Allard; Gary Peltz; Michael J. Holtzman

To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor–invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell–macrophage innate immune axis.


Nature Medicine | 2005

CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection

Jeffrey W. Tyner; Osamu Uchida; Naohiro Kajiwara; Edy Y. Kim; Anand C. Patel; Mary P. O'Sullivan; Michael J. Walter; Reto A. Schwendener; Donald N. Cook; Theodore M. Danoff; Michael J. Holtzman

Host defense against viruses probably depends on targeted death of infected host cells and then clearance of cellular corpses by macrophages. For this process to be effective, the macrophage must presumably avoid its own virus-induced death. Here we identify one such mechanism. We show that mice lacking the chemokine Ccl5 are immune compromised to the point of delayed viral clearance, excessive airway inflammation and respiratory death after mouse parainfluenza or human influenza virus infection. Virus-inducible levels of Ccl5 are required to prevent apoptosis of virus-infected mouse macrophages in vivo and mouse and human macrophages ex vivo. The protective effect of Ccl5 requires activation of the Ccr5 chemokine receptor and consequent bilateral activation of Gαi-PI3K-AKT and Gαi-MEK-ERK signaling pathways. The antiapoptotic action of chemokine signaling may therefore allow scavengers to finally stop the host cell-to-cell infectious process.


Journal of Clinical Investigation | 2006

Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals

Jeffrey W. Tyner; Edy Y. Kim; Kyotaro Ide; Mark R. Pelletier; William T. Roswit; John T. Battaile; Anand C. Patel; G. Alexander Patterson; Mario Castro; Melanie S. Spoor; Yingjian You; Steven L. Brody; Michael J. Holtzman

Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Ralpha2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.


Journal of Clinical Investigation | 2013

Long-term IL-33–producing epithelial progenitor cells in chronic obstructive lung disease

Derek E. Byers; Jennifer Alexander-Brett; Anand C. Patel; Eugene Agapov; Geoffrey Dang-Vu; Xiaohua Jin; Kangyun Wu; Yingjian You; Yael G. Alevy; Jean-Phillippe Girard; Thaddeus S. Stappenbeck; G. Alexander Patterson; Richard A. Pierce; Steven L. Brody; Michael J. Holtzman

Chronic obstructive lung disease is characterized by persistent abnormalities in epithelial and immune cell function that are driven, at least in part, by infection. Analysis of parainfluenza virus infection in mice revealed an unexpected role for innate immune cells in IL-13-dependent chronic lung disease, but the upstream driver for the immune axis in this model and in humans with similar disease was undefined. We demonstrate here that lung levels of IL-33 are selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe chronic obstructive pulmonary disease (COPD). In the mouse model, IL-33/IL-33 receptor signaling was required for Il13 and mucin gene expression, and Il33 gene expression was localized to a virus-induced subset of airway serous cells and a constitutive subset of alveolar type 2 cells that are both linked conventionally to progenitor function. In humans with COPD, IL33 gene expression was also associated with IL13 and mucin gene expression, and IL33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33. Together, these findings provide a paradigm for the role of the innate immune system in chronic disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production.


American Journal of Human Genetics | 2012

Whole-Exome Capture and Sequencing Identifies HEATR2 Mutation as a Cause of Primary Ciliary Dyskinesia

Amjad Horani; Todd E. Druley; Maimoona A. Zariwala; Anand C. Patel; Benjamin T. Levinson; Laura G. Van Arendonk; Katherine Thornton; Joe C. Giacalone; Alison J. Albee; Kate S. Wilson; Emily H. Turner; Deborah A. Nickerson; Jay Shendure; Philip V. Bayly; Margaret W. Leigh; Steven L. Brody; Susan K. Dutcher; Thomas W. Ferkol

Motile cilia are essential components of the mucociliary escalator and are central to respiratory-tract host defenses. Abnormalities in these evolutionarily conserved organelles cause primary ciliary dyskinesia (PCD). Despite recent strides characterizing the ciliome and sensory ciliopathies through exploration of the phenotype-genotype associations in model organisms, the genetic bases of most cases of PCD remain elusive. We identified nine related subjects with PCD from geographically dispersed Amish communities and performed exome sequencing of two affected individuals and their unaffected parents. A single autosomal-recessive nonsynonymous missense mutation was identified in HEATR2, an uncharacterized gene that belongs to a family not previously associated with ciliary assembly or function. Airway epithelial cells isolated from PCD-affected individuals had markedly reduced HEATR2 levels, absent dynein arms, and loss of ciliary beating. MicroRNA-mediated silencing of the orthologous gene in Chlamydomonas reinhardtii resulted in absent outer dynein arms, reduced flagellar beat frequency, and decreased cell velocity. These findings were recapitulated by small hairpin RNA-mediated knockdown of HEATR2 in airway epithelial cells from unaffected donors. Moreover, immunohistochemistry studies in human airway epithelial cells showed that HEATR2 was localized to the cytoplasm and not in cilia, which suggests a role in either dynein arm transport or assembly. The identification of HEATR2 contributes to the growing number of genes associated with PCD identified in both individuals and model organisms and shows that exome sequencing in family studies facilitates the discovery of novel disease-causing gene mutations.


Journal of Clinical Investigation | 2012

IL-13–induced airway mucus production is attenuated by MAPK13 inhibition

Yael G. Alevy; Anand C. Patel; Arthur G. Romero; Dhara A. Patel; Jennifer Tucker; William T. Roswit; Chantel A. Miller; Richard F. Heier; Derek E. Byers; Tom J. Brett; Michael J. Holtzman

Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.


Annual Review of Physiology | 2009

The Role of CLCA Proteins in Inflammatory Airway Disease

Anand C. Patel; Tom J. Brett; Michael J. Holtzman

Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.


Journal of Immunology | 2008

Airway Epithelial versus Immune Cell Stat1 Function for Innate Defense against Respiratory Viral Infection

Laurie P. Shornick; Audrey G. Wells; Yong Zhang; Anand C. Patel; Guangming Huang; Kazutaka Takami; Moises Sosa; Nikhil A. Shukla; Eugene Agapov; Michael J. Holtzman

The epithelial surface is often proposed to actively participate in host defense, but evidence that this is the case remains circumstantial. Similarly, respiratory paramyxoviral infections are a leading cause of serious respiratory disease, but the basis for host defense against severe illness is uncertain. Here we use a common mouse paramyxovirus (Sendai virus) to show that a prominent early event in respiratory paramyxoviral infection is activation of the IFN-signaling protein Stat1 in airway epithelial cells. Furthermore, Stat1−/− mice developed illness that resembled severe paramyxoviral respiratory infection in humans and was characterized by increased viral replication and neutrophilic inflammation in concert with overproduction of TNF-α and neutrophil chemokine CXCL2. Poor control of viral replication as well as TNF-α and CXCL2 overproduction were both mimicked by infection of Stat1−/− airway epithelial cells in culture. TNF-α drives the CXCL2 response, because it can be reversed by TNF-α blockade in vitro and in vivo. These findings pointed to an epithelial defect in Stat1−/− mice. Indeed, we next demonstrated that Stat1−/− mice that were reconstituted with wild-type bone marrow were still susceptible to infection with Sendai virus, whereas wild-type mice that received Stat1−/− bone marrow retained resistance to infection. The susceptible epithelial Stat1−/− chimeric mice also exhibited increased viral replication as well as excessive neutrophils, CXCL2, and TNF-α in the airspace. These findings provide some of the most definitive evidence to date for the critical role of barrier epithelial cells in innate immunity to common pathogens, particularly in controlling viral replication.


Advances in Immunology | 2009

Immune Pathways for Translating Viral Infection into Chronic Airway Disease

Michael J. Holtzman; Derek E. Byers; Loralyn A. Benoit; John T. Battaile; Yingjian You; Eugene Agapov; Chaeho Park; Mitchell H. Grayson; Edy Y. Kim; Anand C. Patel

To better understand the immune basis for chronic inflammatory lung disease, we analyzed a mouse model of lung disease that develops after respiratory viral infection. The disease that develops in this model is similar to asthma and chronic obstructive pulmonary disease (COPD) in humans and is manifested after the inciting virus has been cleared to trace levels. The model thereby mimics the relationship of paramyxoviral infection to the development of childhood asthma in humans. When the acute lung disease appears in this model (at 3 weeks after viral inoculation), it depends on an immune axis that is initiated by expression and activation of the high-affinity IgE receptor (FcvarepsilonRI) on conventional lung dendritic cells (cDCs) to recruit interleukin (IL)-13-producing CD4(+) T cells to the lower airways. However, when the chronic lung disease develops fully (at 7 weeks after inoculation), it is driven instead by an innate immune axis that relies on invariant natural killer T (iNKT) cells that are programmed to activate macrophages to produce IL-13. The interaction between iNKT cells and macrophages depends on contact between the semi-invariant Valpha14Jalpha18-TCR on lung iNKT cells and the oligomorphic MHC-like protein CD1d on macrophages as well as NKT cell production of IL-13 that binds to the IL-13 receptor (IL-13R) on the macrophage. This innate immune axis is also activated in the lungs of humans with severe asthma or COPD based on detection of increased numbers of iNKT cells and alternatively activated IL-13-producing macrophages in the lung. Together, the findings identify an adaptive immune response that mediates acute disease and an innate immune response that drives chronic inflammatory lung disease in experimental and clinical settings.


Journal of Experimental Medicine | 2015

TREM-2 promotes macrophage survival and lung disease after respiratory viral infection

Kangyun Wu; Derek E. Byers; Xiaohua Jin; Eugene Agapov; Jennifer Alexander-Brett; Anand C. Patel; Marina Cella; Susan Gilfilan; Marco Colonna; Daniel L. Kober; Tom J. Brett; Michael J. Holtzman

Wu et al. use a mouse model to show that active respiratory viral infection triggers TREM-2 expression on the macrophage cell surface and thereby prevents macrophage apoptosis during the acute illness. In addition, long after viral clearance, IL-13 and DAP12 promote TREM-2 cleavage to its soluble form that unexpectedly also enhances macrophage survival and promotes chronic inflammatory disease.

Collaboration


Dive into the Anand C. Patel's collaboration.

Top Co-Authors

Avatar

Michael J. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eugene Agapov

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Derek E. Byers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Edy Y. Kim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yael G. Alevy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tom J. Brett

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dhara A. Patel

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeffrey W. Tyner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Laurie P. Shornick

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge