Anand Giddabasappa
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anand Giddabasappa.
Nature Communications | 2015
Michael E. Kurczy; Zheng-Jiang Zhu; Julijana Ivanisevic; Adam M. Schuyler; Kush Lalwani; Antonio F. Santidrian; John David; Anand Giddabasappa; Amanda J. Roberts; Hernando J. Olivos; Peter J. O'Brien; Lauren Franco; Matthew W. Fields; Liliana P Paris; Martin Friedlander; Caroline H. Johnson; Adrian A. Epstein; Howard E. Gendelman; Malcolm R. Wood; Brunhilde H. Felding; Gary J. Patti; Mary E. Spilker; Gary Siuzdak
Fluorocarbons are lipophobic and non-polar molecules that exhibit remarkable biocompatibility, with applications in liquid ventilation and synthetic blood. The unique properties of these compounds have also enabled mass spectrometry imaging of tissues where the fluorocarbons act as a Teflon-like coating for nanostructured surfaces to assist in desorption/ionization. Here we report fluorinated gold nanoparticles (f-AuNPs) designed to facilitate nanostructure imaging mass spectrometry. Irradiation of f-AuNPs results in the release of the fluorocarbon ligands providing a driving force for analyte desorption. The f-AuNPs allow for the mass spectrometry analysis of both lipophilic and polar (central carbon) metabolites. An important property of AuNPs is that they also act as contrast agents for X-ray microtomography and electron microscopy, a feature we have exploited by infusing f-AuNPs into tissue via fluorocarbon liquids to facilitate multimodal (molecular and anatomical) imaging.
Cancer Medicine | 2014
Cathy Zhang; Zhengming Yan; Anand Giddabasappa; Patrick B. Lappin; Cory L. Painter; Qin Zhang; Gang Li; James Goodman; Brett H. Simmons; Bernadette Pascual; Joseph Lee; Ted Levkoff; Tim Nichols; Zhiyong Xie
Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high‐frequency ultrasound (HFUS), dynamic contrast enhanced‐MR (DCE‐MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ‐secretase inhibitor PF‐03084014. Sunitinib was tested in parallel for comparison. In the MDA‐MB‐231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF‐03084014. By immunohistochemistry and FITC‐lectin perfusion assays, we showed that the vascular defects upon treatment with PF‐03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down‐stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA‐MB‐231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF‐03084014. A decrease in the tumor vessel function was also observed through contrast‐enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF‐03084014‐induced functional vessel changes measured by suppressing the Ktrans values using DCE‐MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment‐associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF‐03084014 in the tested imaging modalities. In summary, ultrasound and DCE‐MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF‐03084014 and sunitinib.
BMC Cancer | 2014
Jeetendra Eswaraka; Anand Giddabasappa; Guangzhou Han; Kush Lalwani; Koleen Eisele; Zheng Feng; Timothy Affolter; James G. Christensen; Gang Li
BackgroundCastration resistant prostate cancer (CRPC) is a leading cause of cancer-related deaths in men. The primary cause of mortality and morbidity in patients is bone metastases and remodeling resulting in osteoblastic and osteolytic lesions. Recently, cabozantinib, a multi-kinase inhibitor (VEGFR2 and c-MET inhibitor), was shown to have efficacy on bone lesions in patients. In this study we tested multi-kinase inhibitors: axitinib (VEGFR inhibitor) and crizotinib (c-MET inhibitor) in a combination trial in mice models.MethodsVCaP-Luc cells were grown as subcutaneous implants in intact and castrated NOD-SCID-gamma (NSG) mice to confirm the androgen dependency. For bone metastasis model two cohorts of NSG mice (castrated and intact) received orthotopic injection of VCaP-Luc cells into the bone marrow cavity of left tibia. Mice were monitored weekly for tumor growth using bioluminescence imaging. Animals were randomized into 4 groups based on the tumor bioluminescence signal: vehicle, crizotinib alone, axitinib alone, crizotinib and axitinib in combination. Animals were imaged weekly by in vivo 2-D X-ray imaging to monitor bone remodeling. At the end of the study animals were euthanized and both tibias were extracted for ex vivo high-resolution 3-D micro-computed tomography (μCT) imaging.ResultsSubcutaneous model showed that androgen stimulation may be helpful but not essential for the growth of VCaP-Luc cells. VCaP-Luc cells grown intra-tibially in intact animals caused extensive remodeling of bone with mixed osteoblastic (bone formation) and osteolytic (bone matrix dissolution) lesions. The osteoblastic lesions were predominant and at times extended beyond the tibial shaft into the surrounding tissue. In contrast, only osteolytic lesions were prominent throughout the study in castrated animals. Treatment with crizotinib alone reduced the osteolytic lesions in castrated animals. Axitinib alone reduced the osteoblastic lesions in the intact animals. Combination therapy with axitinib and crizotinib remarkably inhibited the tibial remodeling by VCaP-Luc cells which resulted in a significant reduction of both osteoblastic and osteolytic lesions.ConclusionOur data show that combined inhibition of c-MET and VEGFR can be beneficial for treatment of metastatic bone disease in CRPC and that the drugs act on two different stages of the disease.
Molecular Cancer Therapeutics | 2016
Anand Giddabasappa; Vijay Gupta; Rand Norberg; Parul Gupta; Mary E. Spilker; Jo-Ann Wentland; Brian Rago; Jeetendra Eswaraka; Mauricio Leal; Puja Sapra
Understanding a drugs whole-body biodistribution and tumor targeting can provide important information regarding efficacy, safety, and dosing parameters. Current methods to evaluate biodistribution include in vivo imaging technologies like positron electron tomography and single-photon emission computed tomography or ex vivo quantitation of drug concentrations in tissues using autoradiography and standard biochemical assays. These methods use radioactive compounds or are cumbersome and do not give whole-body information. Here, for the first time, we show the utility of fluorescence molecular tomography (FMT) imaging to determine the biodistribution and targeting of an antibody–drug conjugate (ADC). An anti–5T4-antibody (5T4-Ab) and 5T4-ADC were conjugated with a near-infrared (NIR) fluorophore VivoTag 680XL (VT680). Both conjugated compounds were stable as determined by SEC-HPLC and plasma stability studies. Flow cytometry and fluorescence microscopy studies showed that VT680-conjugated 5T4-ADC specifically bound 5T4-expressing cells in vitro and also exhibited a similar cytotoxicity profile as the unconjugated 5T4-ADC. In vivo biodistribution and tumor targeting in an H1975 subcutaneous xenograft model demonstrated no significant differences between accumulation of VT680-conjugated 5T4-Ab or 5T4-ADC in either normal tissues or tumor. In addition, quantitation of heart signal from FMT imaging showed good correlation with the plasma pharmacokinetic profile suggesting that it (heart FMT imaging) may be a surrogate for plasma drug clearance. These results demonstrate that conjugation of VT680 to 5T4-Ab or 5T4-ADC does not change the behavior of native biologic, and FMT imaging can be a useful tool to understand biodistribution and tumor-targeting kinetics of antibodies, ADCs, and other biologics. Mol Cancer Ther; 15(10); 2530–40. ©2016 AACR.
Oncotarget | 2017
Parul Gupta; Jo-Ann Wentland; Mauricio Leal; Dangshe Ma; Rachel Roach; Antonio Esparza; Lindsay King; Mary E. Spilker; Cedo M. Bagi; Christopher T. Winkelmann; Anand Giddabasappa
Non-invasive imaging using radiolabels is a common technique used to study the biodistribution of biologics. Due to the limited shelf-life of radiolabels and the requirements of specialized labs, non-invasive optical imaging is an attractive alternative for preclinical studies. Previously, we demonstrated the utility of fluorescence molecular tomography (FMT) an optical imaging modality in evaluating the biodistribution of antibody-drug conjugates. As FMT is a relatively new technology, few fluorophores have been validated for in vivo imaging. The goal of this study was to characterize and determine the utility of near-infrared (NIR) fluorophores for biodistribution studies using interleukin-13 receptor subunit alpha-2 antibody (IL13Rα2-Ab). Eight fluorophores (ex/em: 630/800 nm) with an N-hydroxysuccinimide (NHS) linker were evaluated for Ab conjugation. The resulting antibody-fluorophore (Ab-F) conjugates were evaluated in vitro for degree of conjugation, stability and target-binding, followed by in vivo/ex vivo FMT imaging to determine biodistribution in a xenograft model. The Ab-F conjugates (except Ab-DyLight800) showed good in vitro stability and antigen binding. All Ab-F conjugates (except for Ab-BOD630) resulted in a quantifiable signal in vivo and had similar biodistribution profiles, with peak tumor accumulation between 6 and 24 h post-injection. In vivo/ex vivo FMT imaging showed 17–34% ID/g Ab uptake by the tumor at 96 h. Overall, this is the first study to characterize the biodistribution of an Ab using eight NIR fluorophores. Our results show that 3-dimensional optical imaging is a valuable technology to understand biodistribution and targeting, but a careful selection of the fluorophore for each Ab is warranted.
Cancer Research | 2017
Anand Giddabasappa; Parul Gupta; Mauricio Leal; Jonathan Golas; Fengping Li; Bing Yang; Antonio Esparza; Christopher T. Winkelmann; Kenneth G. Geles
Background: NOTCH3, a cell surface receptor involved in cell-cell communications, is over-expressed or amplified in certain human tumors. NOTCH3 is known to regulate proliferation, differentiation and survival of cancer cells or cancer stem cells and thus an important therapeutic target. NOTCH3 antibody drug conjugate (ADC) is comprised of humanized anti-NOTCH3 antibody conjugated to an auristatin based cytotoxic payload. NOTCH3-ADC has shown promising results in pre-clinical tumor models. In this study we evaluated the kinetics, dose-dependent tissue distribution, tumor accumulation and targeting specificity of the NOTCH3-ADC in OVCAR3 xenograft model using fluorescence molecular tomography (FMT) imaging. The NOTCH3-ADC is mouse cross-reactive thus providing an accurate assessment of biodistribution. Methods: NOTCH3-ADC was conjugated to the near-infrared dye, AlexaFluor680 (AF680). The in vitro cellular binding was evaluated by cell-based ELISA. In vivo biodistribution was evaluated using OVCAR3 subcutaneous xenograft model. NOTCH3-ADC-AF680 (1mg/kg; 3mg/kg and 10mg/kg) was injected when the tumors were ~300mm3 and imaged 5 min, 24, 48, 96, 168 and 240 h post-injection. Ex vivo FMT imaging, pharmacokinetic analysis and immunohistochemistry (IHC) was performed at 48 and 240 h after whole-body perfusion. An in vivo receptor competition FMT study was performed by injecting excess of unconjugated anti-NOTCH3 antibody (Ab) or a non-targeted control Ab. Results: In vitro cell binding studies showed that conjugation of AF680 to NOTCH3-ADC did not change its binding ability. A dose-dependent tumor regression was also observed after a single injection of NOTCH3-ADC-AF680. In vivo FMT imaging showed dose-dependent whole-body clearance kinetics of NOTCH3-ADC. Dose-dependent accumulation in the tumors was observed with peak accumulation at 24-48 h post-injection and a slow decline at later time-points. A maximum accumulation of ~10 %ID/g was observed which was independent of the dose of NOTCH3-ADC-AF680. Ex vivo FMT quantitation of tumor was consistent with the IHC for antibody and LC/MS analysis of released payload. Pharmacological competition with excess unlabeled control Ab did not block tumor accumulation of NOTCH3-ADC-AF680, whereas excess unlabeled NOTCH3-Ab blocked ~47% of NOTCH3-ADC-AF680 accumulation. There was no significant specific accumulation of NOTCH3-ADC in other organs as observed by FMT imaging or IHC. Conclusions: These imaging studies provided understanding of the kinetics, tumor accumulation and biodistribution of NOTCH3-ADC. Further this work showcase the utility of non-invasive FMT imaging in better understanding of pharmacology and behavior of biologic drugs. Citation Format: Anand Giddabasappa, Parul Gupta, Mauricio Leal, Jonathan Golas, Fengping Li, Bing Yang, Antonio Esparza, Christopher Winkelmann, Kenneth Geles. Dose-dependent tissue distribution and tumor targeting of Notch3-ADC using fluorescence molecular tomography imaging [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2861. doi:10.1158/1538-7445.AM2017-2861
Cancer Research | 2016
Parul Gupta; Dangshe Ma; Rachel Roach; Mary E. Spilker; Mauricio Leal; Cedo M. Bagi; Anand Giddabasappa
Background: The antibody based therapies are promising anti-cancer therapeutic modalities with minimal toxicity and maximum efficacy. The efficacy of these agents is regulated by their biodistribution and targeting. The contemporary methods of testing the biodistriution of large molecule drugs are expensive and tedious. The development of simple and rapid methodology, such as optical imaging, can enable effective screening of a larger number of compounds. Here we have used Fluorescence Molecular Tomography (FMT), an optical imaging technique to study biodistribution and tumor targeting of IL3RA2 antibody (Ab). Methods: Different near infrared (NIR) fluorophores (λmax:650-800nm) were conjugated to the Ab. The fluorophore conjugation protocol was optimized to achieve a degree of labeling (DOL) of 1-3 for all the conjugates. The properties of Ab-fluorophore conjugate (Ab-F) were compared to unlabeled Ab using SEC-HPLC and cell binding assays in three cell lines with varying expression of IL13RA2: A375(+++), U87MG(+) and H460(-). For in vivo evaluation, Ab-F conjugates were administered intravenously at a dose of 2 nmol fluorophore to nu/nu mice bearing A375. Similar studies were also conducted in U87MG and H460 xenografts with selected Ab-F. The mice were imaged longitudinally (6 time-points) for up to 96 hrs using FMT4000 and the data were analyzed using TrueQuant software. Results: The SEC-HPLC and flow cytometry studies demonstrated that conjugation of Ab with most of the fluorophores did not change its stability or functionality. The in vivo fluorescence data from all the NIR dyes showed a peak tumor accumulation of the Ab-F at 6h and was maintained until 96 hrs. Quantitation of various Ab-F conjugated revealed that 2-6% of the injected dose was accumulated in the A375 tumors. In contrast to tumor profile, there was a steep decline in heart signal (a surrogate for blood/ plasma concentration), suggesting fast clearance from blood. The in vivo and ex vivo data suggested that there was 15-80pmol of Ab-F conjugate accumulated in the tumors at 96h. In addition, Alexa Flour® (AF)680 and AF750 showed minimal non-specific accumulation in other organs, whereas VivoTag® (VT)680 and BODIPY®630 showed a significantly higher non-specific accumulation in liver. Conclusions: These results show that the biological properties of Ab were not changed by conjugation with various NIR fluorophores at DOL Citation Format: Parul Gupta, Dangshe Ma, Rachel Roach, Mary Spilker, Mauricio Leal, Cedo Bagi, Anand Giddabasappa. Characterizing NIR dye-IL13RA2 antibody conjugates for biodistribution studies in xenograft tumor models by fluorescence molecular tomography (FMT). [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2092.
Cancer Research | 2015
Anand Giddabasappa; Vijay Gupta; Timothy S. Fisher; John David; Norberg Rand; Allison Rohner; Justin Cohen; Tracey Clark; Nahor Haddish-Berhane; Adam Root; Chad May
Introduction: Previously we have shown the utility of Fluorescent Molecular Tomography (FMT) imaging in evaluating bio-distribution of biologics. P-cadherin LP-DART is a bi-specific Dual Affinity Re-Targeting (DART®) molecule targeting CD3 expressed on T-cells and P-cadherin expressed on tumors. In this study we evaluated the bio-distribution and tumor targeting of P-cadherin LP-DART using FMT imaging in a colorectal xenograft model. Methods: NSG or athymic nude mice with subcutaneous HCT-116 xenografts were used. Studies that included engraftment of T-cells received either PBMNCs or T-cells isolated from healthy human volunteers. Bio-distribution studies were initiated when the tumors reached 300-500 mm 3 . P-cadherin LP-DART or a negative control-DART (non-targeted domain x CD3 binding domain) was conjugated with a near-infrared fluorophore VivoTag680XL (VT680), and the labeling efficiency was determined by spectrophotometer. T-cells used in trafficking studies were labeled with CellVue815. Cell surface P-cadherin expression and P-cadherin LP-DART binding was determined by flow cytometry. T-cell activity was measured with cytotoxic T-lymphocyte (CTL) assays. FMT imaging was performed longitudinally post injection of labeled bi-specifics. Data was analyzed using TrueQuant software. Plasma and tissues were collected for PK analysis by ELISA or histology. Results: VT680 conjugation to P-cadherin LP-DART did not significantly affect the binding to P-cadherin, whereas CD3 binding was decreased. In vivo FMT imaging revealed high levels of P-cadherin LP-DART accumulation in the tumors. The in vivo kinetics revealed that the peak accumulation in tumors was 96hrs post-injection. At 240hrs post-injection, there was still measurable P-cadherin LP-DART detected in tumors. Ex vivo imaging showed 20-25 fold increase in accumulation of P-cadherin LP-DART compared to negative control DART. Comparison of P-cadherin LP-DART accumulation between PBMNC engrafted and non-engrafted model showed no significant difference in quantity or kinetics. There was no significant difference in the kinetics of elimination in the whole-body, heart or liver between P-cadherin LP-DART or negative control. Ex vivo comparison of accumulation in various organs showed no difference between P-cadherin LP-DART or negative control. Cell trafficking studies with CellVue labeled T-cells showed the co-localization of T-cells and P-cadherin LP-DART in tumors. Conclusion: FMT imaging showed that P-cadherin LP-DART specifically targeted HCT-116 tumors. Cell trafficking studies showed that engrafted T-cells accumulated in tumors. This study shows the utility of FMT in bio-distribution studies of biologics and in vivo cell trafficking. Citation Format: Anand Giddabasappa, Vijay Gupta, Timothy S. Fisher, John David, Norberg Rand, Allison Rohner, Justin Cohen, Tracey Clark, Nahor Haddish-Berhane, Adam Root, Chad May. Bio-distribution and tumor targeting of a P-cadherin x CD3 bi-specific redirected T-cell molecule using fluorescence molecular tomography imaging. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5111. doi:10.1158/1538-7445.AM2015-5111
Cancer Research | 2014
Anand Giddabasappa; Rand Norberg; Mauricio Leal; David Paterson; Kush Lalwani; Ted Levkoff; Stella Rapa; Puja Sapra; Michael Ritche; Jo-Ann Wentland; Brian Rago; Jeetendra Eswaraka
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Introduction: Currently bio-distribution of biologic drugs is evaluated by PET imaging, autoradioraphy using radio-labeled molecules or ex vivo methods. Advances in optical probes and non-invasive imaging technologies have given us an opportunity to conduct such studies without the use of radio-labeled materials or by traditional pharmacokinetic (PK) studies. 5T4 (also known as TPBG or oncofetal antigen) is a transmembrane glycoprotein expressed highly on tumor-initiating cells. Anti-5T4-mcMMAF used in these studies is an anti-5T4-antibody drug conjugate (ADC) that reacts to human, cyno and marmoset orthologs of 5T4. Previously, we showed the efficacy of anti-5T4-ADC in pre-clinical models (Sapra et al.,). In this study we show the utility of Fluorescence Molecular Tomography (FMT) imaging in bio-distribution studies with this ADC using a H1975 non-small cell lung cancer (NSCLC) xenograft model. Methods: For the H1975 xenograft model, five million cells in 50% matrigel were injected into the subcutaneous flanks of the female nu/nu mice, and a biodistribution study was initiated when the tumors reached ∼500 mm3. The anti-5T4-ADC and a control ADC (non-binding) were conjugated with near-IR fluorophore VivoTag680XL. The labeling efficiency and quality was determined by Nanodrop-8000 spectrophotometer and binding assays. FMT imaging was performed longitudinally at 5min, 6hr, 24hr, 48hr, 96hr and 240hrs post injection of labeled ADCs. Ex vivo imaging of organs was performed at intermittent time points after perfusing with PBS. Data was analyzed using TrueQuant software. Plasma and tissues were collected at various time points and analyzed by GyrolabTM workstation and LCMS methods. Results: VivoTag680XL conjugation was efficient and achieved degree of labeling between 2-3. Three-dimensional quantitative analysis of FMT data showed significant specific targeting of anti-5T4-ADC to the tumors (ex vivo and in vivo comparison), relative to the control non-binding ADC. The peak accumulation in tumor was observed at 48hrs post injection and the concentration decreased in later time points. Liver was the major organ for the non-specific accumulation of these antibodies/ADCs, followed by kidneys and lung. Both 5T4-ADC and Control-ADC showed similar accumulation at 48hrs and 96hrs in liver, whereas it decreased significantly at 240hrs. The FMT imaging data was comparative and correlated with the traditional plasma PK profile data. Conclusion: These results show that anti-5T4-ADC targets the tumor better than non-binding ADC. This study also shows the utility of FMT in bio-distribution studies of biologics. Since the fluorophore can be conjugated to any protein/peptide, this novel approach can become a platform technology in conducting biodistribution studies of all biologic drugs. Citation Format: Anand Giddabasappa, Rand Norberg, Mauricio Leal, David Paterson, Kush Lalwani, Ted Levkoff, Stella Rapa, Puja Sapra, Michael Ritche, Joann Wentland, Brian Rago, Jeetendra Eswaraka. Whole-body bio-distribution of anti-5T4-mcMMAF (anti-5T4-ADC) using fluorescence molecular tomography (FMT) imaging in a non-small cell lung cancer mice model. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4293. doi:10.1158/1538-7445.AM2014-4293
Cancer Chemotherapy and Pharmacology | 2012
Brett H. Simmons; Joseph Lee; Kush Lalwani; Anand Giddabasappa; Brittany Snider; Anthony Wong; Patrick B. Lappin; Jeetendra Eswaraka; Julie L. Kan; James G. Christensen; Farbod Shojaei