Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anand Saggar is active.

Publication


Featured researches published by Anand Saggar.


Nature Genetics | 2012

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Jean-Baptiste Rivière; Ghayda M. Mirzaa; Brian J. O'Roak; Margaret Beddaoui; Diana Alcantara; Robert Conway; Judith St-Onge; Jeremy Schwartzentruber; Karen W. Gripp; Sarah M. Nikkel; Christopher T. Sullivan; Thomas R Ward; Hailly Butler; Nancy Kramer; Beate Albrecht; Christine M. Armour; Linlea Armstrong; Oana Caluseriu; Cheryl Cytrynbaum; Beth A. Drolet; A. Micheil Innes; Julie Lauzon; Angela E. Lin; Grazia M.S. Mancini; Wendy S. Meschino; James Reggin; Anand Saggar; Tally Lerman-Sagie; Gökhan Uyanik; Rosanna Weksberg

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.


Nature Genetics | 2008

Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

Elen Griffith; Sarah R. Walker; Carol-Anne Martin; Paola Vagnarelli; Tom Stiff; Bertrand Vernay; Nouriya Al Sanna; Anand Saggar; B.C.J. Hamel; William C. Earnshaw; Penny A. Jeggo; Andrew P. Jackson; Mark O'Driscoll

Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)—resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins—also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.


Journal of Medical Genetics | 2011

DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome

Ingrid Slade; Chiara Bacchelli; Helen Davies; Anne Murray; Fatemeh Abbaszadeh; Sandra Hanks; Rita Barfoot; Amos Burke; Julia Chisholm; Martin Hewitt; Helen Jenkinson; Derek J. King; Bruce Morland; Barry Pizer; Katrina Prescott; Anand Saggar; Lucy Side; Heidi Traunecker; Sucheta Vaidya; Paul Ward; P. Andrew Futreal; Gordan Vujanic; Andrew G. Nicholson; Nj Sebire; Clare Turnbull; John R. Priest; Kathryn Pritchard-Jones; Richard S. Houlston; Charles Stiller; Michael R. Stratton

Background Constitutional DICER1 mutations were recently reported to cause familial pleuropulmonary blastoma (PPB). Aim To investigate the contribution and phenotypic spectrum of constitutional and somatic DICER1 mutations to cancer. Methods and results The authors sequenced DICER1 in constitutional DNA from 823 unrelated patients with a variety of tumours and in 781 cancer cell lines. Constitutional DICER1 mutations were identified in 19 families including 11/14 with PPB, 2/3 with cystic nephroma, 4/7 with ovarian Sertoli–Leydig-type tumours, 1/243 with Wilms tumour (this patient also had a Sertoli–Leydig tumour), 1/1 with intraocular medulloepithelioma (this patient also had PPB), 1/86 with medulloblastoma/infratentorial primitive neuroectodermal tumour, and 1/172 with germ cell tumour. The inheritance was investigated in 17 families. DICER1 mutations were identified in 25 relatives: 17 were unaffected, one mother had ovarian Sertoli–Leydig tumour, one half-sibling had cystic nephroma, and six relatives had non-toxic thyroid cysts/goitre. Analysis of eight tumours from DICER1 mutation-positive patients showed universal retention of the wild-type allele. DICER1 truncating mutations were identified in 4/781 cancer cell lines; all were in microsatellite unstable lines and therefore unlikely to be driver mutations. Conclusion Constitutional DICER1 haploinsufficiency predisposes to a broad range of tumours, making a substantial contribution to PPB, cystic nephroma and ovarian Sertoli–Leydig tumours, but a smaller contribution to other tumours. Most mutation carriers are unaffected, indicating that tumour risk is modest. The authors define the clinical contexts in which DICER1 mutation testing should be considered, the associated tumour risks, and the implications for at-risk individuals. They have termed this condition ‘DICER1 syndrome’. Accession numbers The cDNA Genbank accession number for the DICER1 sequence reported in this paper is NM_030621.2.


American Journal of Human Genetics | 2012

De novo mutations in MLL cause Wiedemann-Steiner syndrome.

Wendy D Jones; Dimitra Dafou; Meriel McEntagart; Wesley J. Woollard; Frances Elmslie; Muriel Holder-Espinasse; Melita Irving; Anand Saggar; Sarah F. Smithson; Richard C. Trembath; Charu Deshpande; Michael A. Simpson

Excessive growth of terminal hair around the elbows (hypertrichosis cubiti) has been reported both in isolation and in association with a variable spectrum of associated phenotypic features. We identified a cohort of six individuals with hypertrichosis cubiti associated with short stature, intellectual disability, and a distinctive facial appearance, consistent with a diagnosis of Wiedemann-Steiner syndrome (WSS). Utilizing a whole-exome sequencing approach, we identified de novo mutations in MLL in five of the six individuals. MLL encodes a histone methyltransferase that regulates chromatin-mediated transcription through the catalysis of methylation of histone H3K4. Each of the five mutations is predicted to result in premature termination of the protein product. Furthermore, we demonstrate that transcripts arising from the mutant alleles are subject to nonsense-mediated decay. These findings define the genetic basis of WSS, provide additional evidence for the role of haploinsufficency of histone-modification enzymes in multiple-congenital-anomaly syndromes, and further illustrate the importance of the regulation of histone modification in development.


Nature Genetics | 2014

Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy

Carol Anne Martin; Ilyas Ahmad; Anna Klingseisen; Muhammad Sajid Hussain; Louise S. Bicknell; Andrea Leitch; Gudrun Nürnberg; Mohammad R. Toliat; Jennie E. Murray; David M. Hunt; Fawad Khan; Zafar Ali; Sigrid Tinschert; James Ding; Charlotte Keith; Margaret E. Harley; Patricia Heyn; Rolf Müller; Ingrid Hoffmann; Valérie Cormier Daire; Hélène Dollfus; Lucie Dupuis; Anu Bashamboo; Ken McElreavey; Ariana Kariminejad; Roberto Mendoza-Londono; Anthony T. Moore; Anand Saggar; Richard G. Weleber; Holger Thiele

Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the genes encoding PLK4 kinase, a master regulator of centriole duplication, and its substrate TUBGCP6 in individuals with microcephalic primordial dwarfism and additional congenital anomalies, including retinopathy, thereby extending the human phenotypic spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenotypes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.


American Journal of Human Genetics | 2009

FREM1 Mutations Cause Bifid Nose, Renal Agenesis, and Anorectal Malformations Syndrome

Anas M. Alazami; Ranad Shaheen; Fatema Alzahrani; Katie Snape; Anand Saggar; B. Brinkmann; Prashant Bavi; Lihadh Al-Gazali; Fowzan S. Alkuraya

An autosomal-recessive syndrome of bifid nose and anorectal and renal anomalies (BNAR) was previously reported in a consanguineous Egyptian sibship. Here, we report the results of linkage analysis, on this family and on two other families with a similar phenotype, which identified a shared region of homozygosity on chromosome 9p22.2-p23. Candidate-gene analysis revealed homozygous frameshift and missense mutations in FREM1, which encodes an extracellular matrix component of basement membranes. In situ hybridization experiments demonstrated gene expression of Frem1 in the midline of E11.5 mouse embryos, in agreement with the observed cleft nose phenotype of our patients. FREM1 is part of a ternary complex that includes FRAS1 and FREM2, and mutations of the latter two genes have been reported to cause Fraser syndrome in mice and humans. The phenotypic variability previously reported for different Frem1 mouse mutants suggests that the apparently distinct phenotype of BNAR in humans may represent a previously unrecognized variant of Fraser syndrome.


European Journal of Human Genetics | 2013

Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A

Eyal Reinstein; Sophia Frentz; Timothy R. Morgan; Sixto García-Miñaúr; Richard J. Leventer; George McGillivray; Mitchel Pariani; Anthony van der Steen; Michael Pope; Muriel Holder-Espinasse; Richard H. Scott; Elizabeth Thompson; Terry Robertson; Brian Coppin; Robert Siegel; Montserrat Bret Zurita; José Ignacio Rodríguez; Carmen Morales; Yuri Rodrigues; Joaquín Arcas; Anand Saggar; Margaret A. Horton; Elaine H. Zackai; John M. Graham; David L. Rimoin; Stephen P. Robertson

Mutations conferring loss of function at the FLNA (encoding filamin A) locus lead to X-linked periventricular nodular heterotopia (XL-PH), with seizures constituting the most common clinical manifestation of this disorder in female heterozygotes. Vascular dilatation (mainly the aorta), joint hypermobility and variable skin findings are also associated anomalies, with some reports suggesting that this might represents a separate syndrome allelic to XL-PH, termed as Ehlers-Danlos syndrome-periventricular heterotopia variant (EDS-PH). Here, we report a cohort of 11 males and females with both hypomorphic and null mutations in FLNA that manifest a wide spectrum of connective tissue and vascular anomalies. The spectrum of cutaneous defects was broader than previously described and is inconsistent with a specific type of EDS. We also extend the range of vascular anomalies associated with XL-PH to included peripheral arterial dilatation and atresia. Based on these observations, we suggest that there is little molecular or clinical justification for considering EDS-PH as a separate entity from XL-PH, but instead propose that there is a spectrum of vascular and connective tissues anomalies associated with this condition for which all individuals with loss-of-function mutations in FLNA should be evaluated. In addition, since some patients with XL-PH can present primarily with a joint hypermobility syndrome, we propose that screening for cardiovascular manifestations should be offered to those patients when there are associated seizures or an X-linked pattern of inheritance.


American Journal of Ophthalmology | 2008

Ophthalmological Aspects of Pierson Syndrome

Cecilie Bredrup; Verena Matejas; Margaret Barrow; Květa Bláhová; Detlef Bockenhauer; Darren Fowler; Richard M. Gregson; Iwona Maruniak-Chudek; Ana Medeira; Erica Laima Mendonça; Mikhail Kagan; Jens Koenig; Hermann Krastel; Hester Y. Kroes; Anand Saggar; Taylor Sawyer; Michael Schittkowski; Janusz Świetliński; Dorothy A. Thompson; Rene G. VanDeVoorde; Dienke Wittebol-Post; Geoffrey Woodruff; Aleksandra Zurowska; Raoul C. M. Hennekam; Martin Zenker; Isabelle Russell-Eggitt

PURPOSE To study the ocular phenotype of Pierson syndrome and to increase awareness among ophthalmologists of the diagnostic features of this condition. DESIGN Retrospective, observational case series. METHODS A multicenter study of 17 patients with molecularly confirmed Pierson syndrome. The eye findings were reviewed and compared to pertinent findings from the literature. RESULTS The most characteristic ocular anomaly was microcoria. A wide range of additional abnormalities were found, including posterior embryotoxon, megalocornea, iris hypoplasia, cataract, abnormal lens shape, posterior lenticonus, persistent fetal vasculature, retinal detachment, variable axial lengths, and glaucoma. There was high interocular and intrafamilial variability. CONCLUSIONS Loss-of-function mutations in laminin beta2 (LAMB2) cause a broad range of ocular pathology, emphasizing the importance of laminin beta2 in eye development. Patients with Pierson syndrome can initially present with ocular signs alone. In newborns with marked bilateral microcoria, Pierson syndrome should be considered and renal function investigated.


Human Molecular Genetics | 2009

X-linked cataract and Nance-Horan syndrome are allelic disorders

Margherita Coccia; Simon P. Brooks; Tom R. Webb; Katja Christodoulou; Izabella O. Wozniak; Victoria Murday; Martha Balicki; Harris A. Yee; Teresia Wangensteen; Ruth Riise; Anand Saggar; Soo-Mi Park; Naheed Kanuga; Peter J. Francis; Eamonn R. Maher; Anthony T. Moore; Isabelle Russell-Eggitt; Alison J. Hardcastle

Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.


Human Mutation | 2010

Role of ADAMTSL4 mutations in FBN1 mutation‐negative ectopia lentis patients

Jose Antonio Aragon-Martin; Dana Ahnood; David G. Charteris; Anand Saggar; Ken K. Nischal; P. Comeglio; Aman Chandra; Anne H. Child; Gavin Arno

Ectopia lentis (EL) is genetically heterogeneous with both autosomal‐dominant and ‐recessive forms. The dominant disorder can be caused by mutations in FBN1, at the milder end of the type‐1 fibrillinopathies spectrum. Recently in a consanguineous Jordanian family, recessive EL was mapped to locus 1q21 containing the ADAMTSL4 gene and a nonsense mutation was found in exon 11 (c.1785T>G, p.Y595X). In this study, 36 consecutive probands with EL who did not fulfill the Ghent criteria for MFS were screened for mutations in FBN1 and ADAMTSL4. Causative FBN1 mutations were identified in 23/36 (64%) of probands while homozygous or compound heterozygous ADAMTSL4 mutations were identified in 6/12 (50%) of the remaining probands. Where available, familial screening of these families confirmed the mutation co‐segregated with the EL phenotype. This study confirms that homozygous mutations in ADAMTSL4 are associated with autosomal‐recessive EL in British families. Furthermore; the first compound heterozygous mutation is described resulting in a PTC and a missense mutation in the PLAC (protease and lacunin) domain. The identification of a causative mutation in ADAMTSL4 may allow the exclusion of Marfan syndrome in these families and guide the clinical management, of particular relevance in young children affected by EL.

Collaboration


Dive into the Anand Saggar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kshitij Mankad

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Pitt

Great Ormond Street Hospital for Children NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Rahul Phadke

University College London

View shared research outputs
Top Co-Authors

Avatar

Alan Fryer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge