Anandhi Anandan
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anandhi Anandan.
Journal of Molecular Biology | 2013
Christopher Wanty; Anandhi Anandan; Susannah Piek; James Walshe; Jhuma Ganguly; Russell W. Carlson; Keith A. Stubbs; Charlene M. Kahler; Alice Vrielink
Gram-negative bacteria possess an outer membrane envelope consisting of an outer leaflet of lipopolysaccharides, also called endotoxins, which protect the pathogen from antimicrobial peptides and have multifaceted roles in virulence. Lipopolysaccharide consists of a glycan moiety attached to lipid A, embedded in the outer membrane. Modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases are members of the YhjW/YjdB/YijP superfamily and usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane attached to a soluble catalytic domain. The crystal structure of the soluble domain of the protein of the lipid A PEA transferase from Neisseria meningitidis has been determined crystallographically and refined to 1.4Å resolution. The structure reveals a core hydrolase fold similar to that of alkaline phosphatase. Loop regions in the structure differ, presumably to enable interaction with the membrane-localized substrates and to provide substrate specificity. A phosphorylated form of the putative nucleophile, Thr280, is observed. Metal ions present in the active site are coordinated to Thr280 and to residues conserved among the family of transferases. The structure reveals the protein components needed for the transferase chemistry; however, substrate-binding regions are not evident and are likely to reside in the transmembrane domain of the protein.
PLOS ONE | 2014
Susannah Piek; Zhirui Wang; Jhuma Ganguly; Adam M. Lakey; Stephanie N. Bartley; Shakeel Mowlaboccus; Anandhi Anandan; Keith A. Stubbs; Martin J. Scanlon; Alice Vrielink; Parastoo Azadi; Russell W. Carlson; Charlene M. Kahler
The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Anandhi Anandan; Genevieve L. Evans; Karmen Condic-Jurkic; Megan L. O’Mara; Constance M. John; Nancy J. Phillips; Gary A. Jarvis; Siobhan S. Wills; Keith A. Stubbs; Isabel Moraes; Charlene M. Kahler; Alice Vrielink
Significance At this time, multidrug-resistant gram-negative bacteria are estimated to cause approximately 700,000 deaths per year globally, with a prediction that this figure could reach 10 million a year by 2050. Antivirulence therapy, in which virulence mechanisms of a pathogen are chemically inactivated, represents a promising approach to the development of treatment options. The family of lipid A phosphoethanolamine transferases in gram-negative bacteria confers bacterial resistance to innate immune defensins and colistin antibiotics. The development of inhibitors to block lipid A phosphoethanolamine transferase could improve innate immune clearance and extend the usefulness of colistin antibiotics. The solved crystal structure and biophysical studies suggest that the enzyme undergoes large conformational changes to enable binding and catalysis of two very differently sized substrates. Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4′ headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.
Biochemical Journal | 2013
Emily Golden; Rachel Paterson; Wan Jun Tie; Anandhi Anandan; Gavin R. Flematti; Gianluca Molla; Elena Rosini; Loredano Pollegioni; Alice Vrielink
The crystal structure of the wild-type form of glutaryl-7-ACA (7-aminocephalosporanic acid) acylase from Pseudomonas N176 and a double mutant of the protein (H57βS/H70βS) that displays enhanced catalytic efficiency on cephalosporin C over glutaryl-7-aminocephalosporanic acid has been determined. The structures show a heterodimer made up of an α-chain (229 residues) and a β-chain (543 residues) with a deep cavity, which constitutes the active site. Comparison of the wild-type and mutant structures provides insights into the molecular reasons for the observed enhanced specificity on cephalosporin C over glutaryl-7-aminocephalosporanic acid and offers the basis to evolve a further improved enzyme variant. The nucleophilic catalytic serine residue, Ser(1β), is situated at the base of the active site cavity. The electron density reveals a ligand covalently bound to the catalytic serine residue, such that a tetrahedral adduct is formed. This is proposed to mimic the transition state of the enzyme for both the maturation step and the catalysis of the substrates. A view of the transition state configuration of the enzyme provides important insights into the mechanism of substrate binding and catalysis.
Advances in Experimental Medicine and Biology | 2016
Anandhi Anandan; Alice Vrielink
Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2012
Anandhi Anandan; Susannah Piek; Charlene M. Kahler; Alice Vrielink
The enzyme phosphoethanolamine transferase A is involved in the addition of phosphoethanolamine moieties to lipid A in Neisseria meningitidis. The enzyme is composed of an N-terminal transmembrane domain and a C-terminal soluble domain that is present in the periplasm of the bacteria. A membrane-deletion construct of the enzyme was designed and expressed in Escherichia coli. Well ordered crystals that diffracted to 1.7 Å resolution were obtained by carrying out a limited trypsin digestion of the protein to remove a predicted N-terminal disordered portion. The crystals belonged to space group P2(1), with unit-cell parameters a=44.3, b=71.6, c=49.9 Å, β=109.2°, and contained one molecule in the asymmetric unit.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Anandhi Anandan; Corinne Vallet; Travis Coyle; Ibrahim Moustafa; Alice Vrielink
Crystallization conditions are reported for an engineered cephalosporin acylase based on the sequence of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas strain N176. Initial crystals were grown using polyethylene glycol as a crystallizing agent; however, these crystals diffracted poorly and exhibited high mosaicity. A dehydration procedure in which crystals were transferred to a solution containing a higher concentration of polyethylene glycol as well as glycerol improved the diffraction quality such that a 1.57 A diffraction data set could be obtained.
Frontiers in Microbiology | 2018
Charlene M. Kahler; K. L. Nawrocki; Anandhi Anandan; Alice Vrielink; William M. Shafer
Bacteria cause disease by two general mechanisms: the action of their toxins on host cells and induction of a pro-inflammatory response that can lead to a deleterious cytokine/chemokine response (e.g., the so-called cytokine storm) often seen in bacteremia/septicemia. These major mechanisms may overlap due to the action of surface structures that can have direct and indirect actions on phagocytic or non-phagocytic cells. In this respect, the lipid A (endotoxin) component of lipopolysaccharide (LPS) possessed by Gram-negative bacteria has been the subject of literally thousands of studies over the past century that clearly identified it as a key virulence factor in endotoxic shock. In addition to its capacity to modulate inflammatory responses, endotoxin can also modulate bacterial susceptibility to host antimicrobials, such as the host defense peptides termed cationic antimicrobial peptides. This review concentrates on the phosphoethanolamine (PEA) decoration of lipid A in the pathogenic species of the genus Neisseria [N. gonorrhoeae and N. meningitidis]. PEA decoration of lipid A is mediated by the enzyme EptA (formerly termed LptA) and promotes resistance to innate defense systems, induces the pro-inflammatory response and can influence the in vivo fitness of bacteria during infection. These important biological properties have driven efforts dealing with the biochemistry and structural biology of EptA that will facilitate the development of potential inhibitors that block PEA addition to lipid A.
Acta Crystallographica Section A | 2014
Alice Vrielink; Anandhi Anandan; Susannah Piek; Isabel Moares; Charlene M. Kahler
Multiple drug resistance (MDR) in Gram-negative bacteria represents one of the most intractable problems facing modern medicine. Not only is antibiotic resistance incrementally increasing during clinical treatment of infections, but also the evolution and acquisition of new mechanisms of antibiotic resistance lead to the sudden loss of the capacity to treat infections. The most recent superbug, MDR-Neisseria gonorrhoeae, causes the untreatable sexually transmitted infection gonorrhoeae. Chronic gonococcal infections have a high morbidity rate and, due to the explosion in cases worldwide, the community burden is enormous. N. gonorrhoeae colonizes the mucosal surfaces of the human body and has a number of virulence mechanisms that prevent clearance by the human immune system. The most important of these mechanisms is decoration of the lipooligosaccharide lipid A headgroups with phosphoethanolamine (PEA) by the enzyme, lipid A PEA transferase (LptA). Inactivation of the LptA results in the complete loss of PEA groups from lipid A, loss of bacterial colonisation of epithelial cells (Takahashi et al., 2008), increased sensitivity to cationic antimicrobial peptides (Tzeng et al., 2005) and reduced resistance to human complement mediated killing (Lewis et al., 2013). LptA knockouts of N. gonorrhoeae also result in the complete loss of virulence in models of human and mouse infections. Based on these findings we have undertaken a structure-guided approach to develop inhibitors of LptA that will assist in controlling infection and transmission by this important human pathogen. LptA is a membrane protein that interacts with two different lipid substrates. We have determined the crystal structure of the enzyme to 2.75Å resolution. The structure provides insights into the mechanism of substrate binding and catalysis and suggests that significant conformational changes occur through its catalytic cycle.
Soft Matter | 2017
Leonie van ’t Hag; Anandhi Anandan; Shane A. Seabrook; Sally L. Gras; Calum J. Drummond; Alice Vrielink; Charlotte E. Conn