Anandi Sawant
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anandi Sawant.
Cancer Research | 2013
Anandi Sawant; Jessy Deshane; Joel Jules; Carnella Lee; Brittney A. Harris; Xu Feng; Selvarangan Ponnazhagan
Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth, but the factors contributing to aggressive bone destruction are not well understood. In this study, we show the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Because MDSC originate from the same myeloid lineage as macrophages, which are osteoclast precursors, we hypothesized that MDSC may undergo osteoclast differentiation and contribute to enhanced bone destruction and tumor growth. Using an immunocompetent mouse model of breast cancer bone metastasis, we confirmed that MDSC isolated from the tumor-bone microenvironment differentiated into functional osteoclasts both in vitro and in vivo. Mechanistic investigations revealed that nitric oxide signaling was critical for differentiation of MDSC into osteoclasts. Remarkably, osteoclast differentiation did not occur in MDSC isolated from control or tumor-bearing mice that lacked bone metastasis, signifying the essential cross-talk between tumor cells and myeloid progenitors in the bone microenvironment as a requirement for osteoclast differentiation of MDSC. Overall, our results identify a wholly new facet to the multifunctionality of MDSC in driving tumor progression, in this case as a novel osteoclast progenitor that specifically drives bone metastasis during cancer progression.
Journal of Immunology | 2012
Anandi Sawant; Jonathan A. Hensel; Diptiman Chanda; Brittney A. Harris; Gene P. Siegal; Selvarangan Ponnazhagan
Elevated levels of plasmacytoid dendritic cells (pDC) have been reported in breast cancer patients, but the significance remains undefined. Using three immunocompetent mouse models of breast cancer bone metastasis, we identified a key role for pDC in facilitating tumor growth through immunosuppression and aggressive osteolysis. Following infiltration of macrophages upon breast cancer dissemination, there was a steady increase in pDC within the bone, which resulted in a sustained Th2 response along with elevated levels of regulatory T cells and myeloid-derived suppressor cells. Subsequently, pDC and CD4+ T cells, producing osteolytic cytokines, increased with tumor burden, causing severe bone damage. Microcomputed tomography and histology analyses of bone showed destruction of femur and tibia. The therapeutic significance of this finding was confirmed by depletion of pDC, which resulted in decreased tumor burden and bone loss by activating tumor-specific cytolytic CD8+ T cells and decreasing suppressor cell populations. Thus, pDC depletion may offer a novel adjuvant strategy to therapeutically influence breast cancer bone metastasis.
Clinical Cancer Research | 2009
Diptiman Chanda; Tatyana Isayeva; Sanjay Kumar; Jonathan A. Hensel; Anandi Sawant; Girish Ramaswamy; Gene P. Siegal; Matthew S. Beatty; Selvarangan Ponnazhagan
Purpose: Current evidence indicates that an osteoblast lesion in prostate cancer is preceded by osteolysis. Thus, prevention of osteolysis would reduce complications of bone metastasis. Bone marrow–derived mesenchymal stem cells have the ability to differentiate into osteoblast and produce osteoprotegerin, a decoy receptor for the receptor activator for nuclear factor κB ligand, naturally. The present study examined the potential of unmodified mesenchymal stem cells to prevent osteolytic bone lesions in a preclinical mouse model of prostate cancer. Experimental Design: The human prostate cancer cell line PC3 was implanted in tibiae of severe combined immunodeficient mice. After establishment of the tumor, either unmodified or genetically engineered mesenchymal stem cells overexpressing osteoprotegerin was injected at the site of tumor growth. The effects of therapy were monitored by bioluminescence imaging, micro–computed tomography, immunohistochemistry, and histomorphometry. Results: Data indicated significant (P < 0.001) inhibition of tumor growth and restoration of bone in mice treated with unmodified and modified mesenchymal stem cells. Detailed analysis suggested that the donor mesenchymal stem cell inhibited tumor progression by producing woven bone around the growing tumor cells in the tibiae and by preventing osteoclastogenesis. Conclusions: Overcoming the limitation of the number of mesenchymal stem cells available in the bone can provide significant amelioration for osteolytic damage without further modification. (Clin Cancer Res 2009;15(23):7175–85)
Cancer Research | 2013
Anandi Sawant; Cara Schafer; Tong Huan Jin; Jaroslaw W. Zmijewski; Hubert M. Tse; Justin C. Roth; Zhihuan Sun; Gene P. Siegal; Victor J. Thannickal; Stefan C. Grant; Selvarangan Ponnazhagan; Jessy Deshane
Chemoresistance due to heterogeneity of the tumor microenvironment (TME) hampers the long-term efficacy of first-line therapies for lung cancer. Current combination therapies for lung cancer provide only modest improvement in survival, implicating necessity for novel approaches that suppress malignant growth and stimulate long-term antitumor immunity. Oxidative stress in the TME promotes immunosuppression by tumor-infiltrating myeloid-derived suppressor cells (MDSC), which inhibit host protective antitumor immunity. Using a murine model of lung cancer, we demonstrate that a combination treatment with gemcitabine and a superoxide dismutase mimetic targets immunosuppressive MDSC in the TME and enhances the quantity and quality of both effector and memory CD8(+) T-cell responses. At the effector cell function level, the unique combination therapy targeting MDSC and redox signaling greatly enhanced cytolytic CD8(+) T-cell response and further decreased regulatory T cell infiltration. For long-term antitumor effects, this therapy altered the metabolism of memory cells with self-renewing phenotype and provided a preferential advantage for survival of memory subsets with long-term efficacy and persistence. Adoptive transfer of memory cells from this combination therapy prolonged survival of tumor-bearing recipients. Furthermore, the adoptively transferred memory cells responded to tumor rechallenge exerting long-term persistence. This approach offers a new paradigm to inhibit immunosuppression by direct targeting of MDSC function, to generate effector and persistent memory cells for tumor eradication, and to prevent lung cancer relapse.
The Prostate | 2011
Jonathan A. Hensel; Diptiman Chanda; Sanjay Kumar; Anandi Sawant; William E. Grizzle; Gene P. Siegal; Selvarangan Ponnazhagan
The antimicrobial peptide, leucine–leucine‐37 (LL‐37), stimulates proliferation, angiogenesis, and cellular migration, inhibits apoptosis and is associated with inflammation. Since these functional processes are often exaggerated in cancer, the aim of the present study was to investigate the expression and role of LL‐37 in prostate cancer (PCa) and establish its value as a therapeutic target.
Cancer Research | 2013
Anandi Sawant; Selvarangan Ponnazhagan
Immune cells and their secreted growth factors play major roles in tumor growth and metastasis. Interplay between the growing tumor and infiltrating immune cells determines the nature of immune response and ultimately, tumor fate. Increased infiltration of protumorigenic immune cells promotes tumor growth as well as dissemination to distant sites. These cells induce immunosuppression that inhibits proliferation and functions of cells of antitumor immune response. One population of immunosuppressive cells that is increasingly gaining attention is myeloid-derived suppressor cells (MDSC). MDSCs are immature myeloid progenitors that suppress T-cell effector functions and promote angiogenesis. MDSC numbers are elevated at both the primary tumor and metastatic sites, including bone. In addition to immunosuppressive functions of MDSCs, we and others have recently discovered a novel function for MDSCs as osteoclast progenitors. Osteolysis is a common complication in the carcinomas of breast, lung, prostate, and multiple myeloma with poor prognosis. Therefore, targeting the functions of MDSCs may exert dual therapeutic effects on immunosuppression and bone pathology. Cancer Res; 73(15); 4606-10. ©2013 AACR.
Journal of Biological Chemistry | 2012
Anandi Sawant; Diptiman Chanda; Tatyana Isayeva; George Tsuladze; W. T. Garvey; Selvarangan Ponnazhagan
Background: Besides inhibiting osteoblast differentiation of MSC, noggin may induce adipogenesis. Results: Noggin induces adipogenic differentiation of MSC via a novel mechanism. Individuals with high BMI have elevated circulating noggin levels in plasma. Conclusion: Noggin regulates both osteoblast and adipocyte differentiation of MSC and, hence, is a master regulator of MSC plasticity. Significance: Noggin may be a novel biomarker for obesity. Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Joo Hyoung Lee; Tatyana Isayeva; Matthew R. Larson; Anandi Sawant; Ha-Ram Cha; Diptiman Chanda; Igor Chesnokov; Selvarangan Ponnazhagan
Significance Despite the development of second-generation androgen receptor (AR)-targeted therapies for castration-resistant prostate cancer (CRPC), the effects are only modest, compelling the need for novel therapy combinations that can maximize the antitumor effects of new-generation chemotherapies with minimal acquired resistance, attributed to AR modifications. The present study identified that endostatin (ES), known for its antiangiogenic properties on tumor vasculature, exerts a profound antiproliferative effect on AR-positive human PCa cells. By a systematic approach involving a combination of in situ, cell-free, yeast-two hybrid, structural modeling, and mutagenesis studies, we determined that intracellular trafficking of ES in AR-positive PCa cells leads to a direct interaction with AR in the cytosol, affecting the transcriptional activation of AR target genes. Acquired resistance to androgen receptor (AR)-targeted therapies compels the development of novel treatment strategies for castration-resistant prostate cancer (CRPC). Here, we report a profound effect of endostatin on prostate cancer cells by efficient intracellular trafficking, direct interaction with AR, reduction of nuclear AR level, and down-regulation of AR-target gene transcription. Structural modeling followed by functional analyses further revealed that phenylalanine-rich α1-helix in endostatin—which shares structural similarity with noncanonical nuclear receptor box in AR—antagonizes AR transcriptional activity by occupying the activation function (AF)-2 binding interface for coactivators and N-terminal AR AF-1. Together, our data suggest that endostatin can be recognized as an endogenous AR inhibitor that impairs receptor function through protein–protein interaction. These findings provide new insights into endostatin whose antitumor effect is not limited to inhibiting angiogenesis, but can be translated to suppressing AR-mediated disease progression in CRPC.
Oncotarget | 2016
Cara Schafer; Yong Wang; Kenneth P. Hough; Anandi Sawant; Stefan C. Grant; Victor J. Thannickal; Jaroslaw W. Zmijewski; Selvarangan Ponnazhagan; Jessy Deshane
Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO−/− MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO−/− CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.
OncoImmunology | 2013
Anandi Sawant; Selvarangan Ponnazhagan
Elevated levels of plasmacytoid dendritic cells (pDC) have been observed as breast cancer disseminates to the bone. The selective depletion of pDC in mice led to a total abrogation of bone metastasis as well as to an increase in TH1 antitumor response, suggesting that pDC may be considered as a potential therapeutic target for metastatic breast cancer.