Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anandkumar Raichurkar is active.

Publication


Featured researches published by Anandkumar Raichurkar.


ACS Chemical Biology | 2013

Aminopyrazinamides: Novel and Specific GyrB Inhibitors that Kill Replicating and Nonreplicating Mycobacterium tuberculosis

Pravin S. Shirude; Prashanti Madhavapeddi; Julie Tucker; Kannan Murugan; Vikas Patil; Halesha D. Basavarajappa; Anandkumar Raichurkar; Vaishali Humnabadkar; Syeed Hussein; Sreevalli Sharma; V. K. Ramya; Chandan Narayan; Tanjore S. Balganesh; Vasan K. Sambandamurthy

Aminopyrazinamides originated from a high throughput screen targeting the Mycobacterium smegmatis (Msm) GyrB ATPase. This series displays chemical tractability, robust structure-activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors. The aminopyrazinamides display excellent mycobacterial kill under in vitro, intracellular, and hypoxic conditions.


Journal of Medicinal Chemistry | 2013

Thiazolopyridine Ureas as Novel Antitubercular Agents Acting through Inhibition of DNA Gyrase B.

Manoj Kale; Anandkumar Raichurkar; Shahul Hameed P; David Waterson; David C. McKinney; M. R. Manjunatha; Usha Kranthi; Krishna Koushik; Lalit kumar Jena; Vikas Shinde; Suresh Rudrapatna; Shubhada Barde; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Anirban Ghosh; V. K. Ramya; Supreeth Guptha; Sreevalli Sharma; Prakash Vachaspati; K.N. Mahesh Kumar; Jayashree Giridhar; Jitendar Reddy; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; Julie Tucker; P. Ann Boriack-Sjodin

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 μM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Bioorganic & Medicinal Chemistry Letters | 2014

Thiazolopyridone ureas as DNA gyrase B inhibitors: optimization of antitubercular activity and efficacy.

Ramesh R. Kale; Manoj Kale; David Waterson; Anandkumar Raichurkar; Shahul P. Hameed; M. R. Manjunatha; B. K. Kishore Reddy; Krishnan Malolanarasimhan; Vikas Shinde; Krishna Koushik; Lalit kumar Jena; Sreenivasaiah Menasinakai; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Sreevalli Sharma; Radha Nandishaiah; K.N. Mahesh Kumar; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; P. Ann Boriack-Sjodin; Vasan K. Sambandamurthy; Sunita M. de Sousa; Sandeep R. Ghorpade

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 μM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Journal of Medicinal Chemistry | 2014

Novel N-Linked Aminopiperidine-Based Gyrase Inhibitors with Improved hERG and in Vivo Efficacy against Mycobacterium tuberculosis

Shahul Hameed P; Vikas Patil; Suresh Solapure; Umender Sharma; Prashanti Madhavapeddi; Anandkumar Raichurkar; Murugan Chinnapattu; Praveena Manjrekar; Gajanan Shanbhag; Jayashree Puttur; Vikas Shinde; Sreenivasaiah Menasinakai; Suresh Rudrapatana; Vijayashree Achar; Disha Awasthy; Radha Nandishaiah; Vaishali Humnabadkar; Anirban Ghosh; Chandan Narayan; V. K. Ramya; Parvinder Kaur; Sreevalli Sharma; Jim Werngren; Sven Hoffner; C. N. Naveen Kumar; Jitendar Reddy; Mahesh Kumar Kn; Samit Ganguly; Ugarkar Bheemarao; Kakoli Mukherjee

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.


Journal of Medicinal Chemistry | 2014

N-Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds

P Shahul Hameed; Abhishek Srivastava; Gajanan Shanbhag; Sapna Morayya; Nikhil Rautela; Disha Awasthy; Stefan Kavanagh; Jitendar Reddy; K. R. Prabhakar; Ramanatha Saralaya; Robert Nanduri; Anandkumar Raichurkar; Sreenivasaiah Menasinakai; Vijayashree Achar; María Belén Jiménez-Díaz; María Santos Martínez; Iñigo Angulo-Barturen; Santiago Ferrer; Laura Sanz; Francisco Javier Gamo; Sandra Duffy; Vicky M. Avery; David Waterson; Marcus C. S. Lee; Olivia Coburn-Flynn; David A. Fidock; Pravin S. Iyer; Shridhar Narayanan; Vinayak Hosagrahara; Vasan K. Sambandamurthy

From the phenotypic screening of the AstraZeneca corporate compound collection, N-aryl-2-aminobenzimidazoles have emerged as novel hits against the asexual blood stage of Plasmodium falciparum (Pf). Medicinal chemistry optimization of the potency against Pf and ADME properties resulted in the identification of 12 as a lead molecule. Compound 12 was efficacious in the P. berghei (Pb) model of malaria. This compound displayed an excellent pharmacokinetic profile with a long half-life (19 h) in rat blood. This profile led to an extended survival of animals for over 30 days following a dose of 50 mg/kg in the Pb malaria model. Compound 12 retains its potency against a panel of Pf isolates with known mechanisms of resistance. The fast killing observed in the in vitro parasite reduction ratio (PRR) assay coupled with the extended survival highlights the promise of this novel chemical class for the treatment of malaria.


ACS Medicinal Chemistry Letters | 2014

Benzimidazoles: novel mycobacterial gyrase inhibitors from scaffold morphing.

Shahul Hameed P; Anandkumar Raichurkar; Prashanti Madhavapeddi; Sreenivasaiah Menasinakai; Sreevalli Sharma; Parvinder Kaur; Radha Nandishaiah; Jitendar Reddy; Vasan K. Sambandamurthy; Dharmarajan Sriram

Type II topoisomerases are well conserved across the bacterial species, and inhibition of DNA gyrase by fluoroquinolones has provided an attractive option for treatment of tuberculosis (TB). However, the emergence of fluoroquinolone-resistant strains of Mycobacterium tuberculosis (Mtb) poses a threat for its sustainability. A scaffold hopping approach using the binding mode of novel bacterial topoisomerase inhibitors (NBTIs) led to the identification of a novel class of benzimidazoles as DNA gyrase inhibitors with potent anti-TB activity. Docking of benzimidazoles to a NBTI bound crystal structure suggested that this class of compound makes key contacts in the enzyme active site similar to the reported NBTIs. This observation was further confirmed through the measurement of DNA gyrase inhibition, and activity against Mtb strains harboring mutations that confer resistance to aminopiperidines based NBTIs and Mtb strains resistant to moxifloxacin. Structure-activity relationship modification at the C-7 position of the left-hand side ring provided further avenue to improve hERG selectivity for this chemical series that has been the major challenges for NBTIs.


Nature Communications | 2015

Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate

Shahul Hameed P; Suresh Solapure; Vikas Patil; Philipp P. Henrich; Pamela Magistrado; Kannan Murugan; Pavithra Viswanath; Jayashree Puttur; Abhishek Srivastava; Eknath Bellale; Gajanan Shanbag; Disha Awasthy; Sudhir Landge; Sapna Morayya; Krishna Koushik; Ramanatha Saralaya; Anandkumar Raichurkar; Nikhil Rautela; Nilanjana Roy Choudhury; Anisha Ambady; Radha Nandishaiah; Jitendar Reddy; K. R. Prabhakar; Sreenivasaiah Menasinakai; Suresh Rudrapatna; Monalisa Chatterji; María Belén Jiménez-Díaz; María Santos Martínez; Laura Sanz; Olivia Coburn-Flynn

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Journal of Medicinal Chemistry | 2014

Diarylthiazole: an antimycobacterial scaffold potentially targeting PrrB-PrrA two-component system.

Eknath Bellale; Maruti Naik; Varun Vb; Anisha Ambady; Ashwini Narayan; Sudha Ravishankar; Parvinder Kaur; Robert E. McLaughlin; James Whiteaker; Sapna Morayya; Supreeth Guptha; Sreevalli Sharma; Anandkumar Raichurkar; Disha Awasthy; Vijayshree Achar; Prakash Vachaspati; Balachandra Bandodkar; Manoranjan Panda; Monalisa Chatterji

Diarylthiazole (DAT), a hit from diversity screening, was found to have potent antimycobacterial activity against Mycobacterium tuberculosis (Mtb). In a systematic medicinal chemistry exploration, we demonstrated chemical opportunities to optimize the potency and physicochemical properties. The effort led to more than 10 compounds with submicromolar MICs and desirable physicochemical properties. The potent antimycobacterial activity, in conjunction with low molecular weight, made the series an attractive lead (antibacterial ligand efficiency (ALE)>0.4). The series exhibited excellent bactericidal activity and was active against drug-sensitive and resistant Mtb. Mutational analysis showed that mutations in prrB impart resistance to DAT compounds but not to reference drugs tested. The sensor kinase PrrB belongs to the PrrBA two component system and is potentially the target for DAT. PrrBA is a conserved, essential regulatory mechanism in Mtb and has been shown to have a role in virulence and metabolic adaptation to stress. Hence, DATs provide an opportunity to understand a completely new target system for antimycobacterial drug discovery.


Journal of Medicinal Chemistry | 2014

Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents

Shahul Hameed P; Murugan Chinnapattu; Gajanan Shanbag; Praveena Manjrekar; Krishna Koushik; Anandkumar Raichurkar; Vikas Patil; Sandesh Jatheendranath; Suresh Rudrapatna; Shubhada Pramod Barde; Nikhil Rautela; Disha Awasthy; Sapna Morayya; Chandan Narayan; Stefan Kavanagh; Ramanatha Saralaya; Pavithra Viswanath; Kakoli Mukherjee; Balachandra Bandodkar; Abhishek Srivastava; Jitender Reddy; K. R. Prabhakar; Achyut Sinha; María Belén Jiménez-Díaz; María Santos Martínez; Iñigo Angulo-Barturen; Santiago Ferrer; Laura Sanz; Francisco Javier Gamo; Sandra Duffy

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Journal of Medicinal Chemistry | 2015

Structure Guided Lead Generation for M. Tuberculosis Thymidylate Kinase (Mtb Tmk): Discovery of 3-Cyanopyridone and 1,6-Naphthyridin-2-One as Potent Inhibitors.

Maruti Naik; Anandkumar Raichurkar; Balachandra Bandodkar; Begur V. Varun; Shantika Bhat; Rajesh Kalkhambkar; Kannan Murugan; Rani Menon; Jyothi Bhat; Beena Paul; Harini Iyer; Syeed Hussein; Julie Tucker; Martin Vogtherr; Kevin J. Embrey; Helen McMiken; Swati Prasad; Adrian Liam Gill; Bheemarao G. Ugarkar; Janani Venkatraman; Jon Read; Manoranjan Panda

M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively. We describe three cyanopyridone subseries that arose during our hit to lead campaign, along with cocrystal structures of representatives with Mtb TMK. Structure aided optimization of the cyanopyridones led to single digit nanomolar inhibitors of Mtb TMK. Fragment based lead generation, augmented by crystal structures and the SAR from the cyanopyridones, enabled us to drive the potency of our 1,6-naphthyridin-2-one fragment hit from 500 μM to 200 nM while simultaneously improving the ligand efficiency. Cyanopyridone derivatives containing sulfoxides and sulfones showed cellular activity against M. tuberculosis. To the best of our knowledge, these compounds are the first reports of non-thymidine-like inhibitors of Mtb TMK.

Collaboration


Dive into the Anandkumar Raichurkar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge