Ananyo Choudhury
University of the Witwatersrand
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ananyo Choudhury.
Nature | 2015
Deepti Gurdasani; Tommy Carstensen; Fasil Tekola-Ayele; Luca Pagani; Ioanna Tachmazidou; Konstantinos Hatzikotoulas; Savita Karthikeyan; Louise Iles; Martin Pollard; Ananyo Choudhury; Graham R. S. Ritchie; Yali Xue; Jennifer L. Asimit; Rebecca N. Nsubuga; Elizabeth H. Young; Cristina Pomilla; Katja Kivinen; Kirk Rockett; Anatoli Kamali; Ayo Doumatey; Gershim Asiki; Janet Seeley; Fatoumatta Sisay-Joof; Muminatou Jallow; Stephen Tollman; Ephrem Mekonnen; Rosemary Ekong; Tamiru Oljira; Neil Bradman; Kalifa Bojang
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Human Molecular Genetics | 2011
Michele Ramsay; Caroline T. Tiemessen; Ananyo Choudhury; Himla Soodyall
The populations of Africa harbour the greatest human genetic diversity following an evolutionary history tracing its beginnings on the continent to time before the emergence of Homo sapiens. Signatures of selection are detectable as responses to ancient environments and cultural practices, modulated by more recent events including infectious epidemics, migrations, admixture and, of course, chance. The age of high-throughput biology is not passing Africa by. African-based cohort studies and networks with an African footprint are ideal springboards for disease-related genetic and genomic studies. Initiatives like HapMap, the 1000 Genomes Project, MalariaGEN, the INDEPTH network and Human Heredity and Health in Africa are catalysts to exploring African genetic diversity and its role in the spectrum from health to disease. The challenges are abundant in dissecting biological questions in the light of linguistic, cultural, geographic and political boundaries and their respective roles in shaping health-related profiles. Will studies based on African populations lead to a new wave of discovery of genetic contributors to disease?
BMC Genomics | 2014
Ananyo Choudhury; Scott Hazelhurst; Ayton Meintjes; Ovokeraye Achinike-Oduaran; Shaun Aron; Junaid Gamieldien; Mahjoubeh Jalali Sefid Dashti; Nicola Mulder; Nicki Tiffin; Michele Ramsay
BackgroundPopulation differentiation is the result of demographic and evolutionary forces. Whole genome datasets from the 1000 Genomes Project (October 2012) provide an unbiased view of genetic variation across populations from Europe, Asia, Africa and the Americas. Common population-specific SNPs (MAF > 0.05) reflect a deep history and may have important consequences for health and wellbeing. Their interpretation is contextualised by currently available genome data.ResultsThe identification of common population-specific (CPS) variants (SNPs and SSV) is influenced by admixture and the sample size under investigation. Nine of the populations in the 1000 Genomes Project (2 African, 2 Asian (including a merged Chinese group) and 5 European) revealed that the African populations (LWK and YRI), followed by the Japanese (JPT) have the highest number of CPS SNPs, in concordance with their histories and given the populations studied. Using two methods, sliding 50-SNP and 5-kb windows, the CPS SNPs showed distinct clustering across large genome segments and little overlap of clusters between populations. iHS enrichment score and the population branch statistic (PBS) analyses suggest that selective sweeps are unlikely to account for the clustering and population specificity. Of interest is the association of clusters close to recombination hotspots. Functional analysis of genes associated with the CPS SNPs revealed over-representation of genes in pathways associated with neuronal development, including axonal guidance signalling and CREB signalling in neurones.ConclusionsCommon population-specific SNPs are non-randomly distributed throughout the genome and are significantly associated with recombination hotspots. Since the variant alleles of most CPS SNPs are the derived allele, they likely arose in the specific population after a split from a common ancestor. Their proximity to genes involved in specific pathways, including neuronal development, suggests evolutionary plasticity of selected genomic regions. Contrary to expectation, selective sweeps did not play a large role in the persistence of population-specific variation. This suggests a stochastic process towards population-specific variation which reflects demographic histories and may have some interesting implications for health and susceptibility to disease.
BMC Genomics | 2011
Moumita Datta; Ananyo Choudhury; Ansuman Lahiri; Nitai P. Bhattacharyya
BackgroundHIP1 Protein Interactor (HIPPI) is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS), present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator.ResultsWe carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p < 0.05) while 457 genes were down-regulated. Several transcription factors including CBP, REST, C/EBP beta were altered by HIPPI in this study. HIPPI also interacted with P53 in the protein level. This interaction occurred exclusively in the nuclear compartment and was absent in cells where HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntingtons disease (HD) patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in the upstream sequences of genes altered in HD.ConclusionsTaken together, the results suggest that HIPPI could act as an important transcription regulator in cell regulating a vast array of genes, particularly transcription factors and at least, in part, play a role in transcription deregulation observed in HD.
Global Health, Epidemiology and Genomics | 2016
Michele Ramsay; Nigel J. Crowther; E. Tambo; Godfred Agongo; V. Baloyi; Sekgothe Dikotope; X. Gómez-Olivé; Nicole G. Jaff; Hermann Sorgho; Ryan G. Wagner; C. Khayeka-Wandabwa; Ananyo Choudhury; Scott Hazelhurst; Kathleen Kahn; Zané Lombard; Freedom Mukomana; Cassandra Soo; Himla Soodyall; Alisha Wade; Sulaimon Afolabi; I. Agorinya; Lucas Amenga-Etego; Stuart A. Ali; J. D. Bognini; Romuald Palwende Boua; Cornelius Debpuur; S. Diallo; E. Fato; A. Kazienga; S. Z. Konkobo
Africa is experiencing a rapid increase in adult obesity and associated cardiometabolic diseases (CMDs). The H3Africa AWI-Gen Collaborative Centre was established to examine genomic and environmental factors that influence body composition, body fat distribution and CMD risk, with the aim to provide insights towards effective treatment and intervention strategies. It provides a research platform of over 10 500 participants, 40–60 years old, from Burkina Faso, Ghana, Kenya and South Africa. Following a process that involved community engagement, training of project staff and participant informed consent, participants were administered detailed questionnaires, anthropometric measurements were taken and biospecimens collected. This generated a wealth of demographic, health history, environmental, behavioural and biomarker data. The H3Africa SNP array will be used for genome-wide association studies. AWI-Gen is building capacity to perform large epidemiological, genomic and epigenomic studies across several African counties and strives to become a valuable resource for research collaborations in Africa.
Molecular Medicine | 2014
Nimmisha Govind; Ananyo Choudhury; Bridget Hodkinson; Claudia Ickinger; Jacqueline Frost; Annette Lee; Peter K. Gregersen; Richard J. Reynolds; S. Louis Bridges; Scott Hazelhurst; Michele Ramsay; Mohammed Tikly
The aim of this study was to identify genetic variants associated with rheumatoid arthritis (RA) risk in black South Africans. Black South African RA patients (n = 263) were compared with healthy controls (n = 374). Genotyping was performed using the Immunochip, and four-digit high-resolution human leukocyte antigen (HLA) typing was performed by DNA sequencing of exon 2. Standard quality control measures were implemented on the data. The strongest associations were in the intergenic region between the HLA-DRB1 and HLA-DQA1 loci. After conditioning on HLA-DRB1 alleles, the effect in the rest of the extended major histocompatibility (MHC) diminished. Non-HLA single nucleotide polymorphisms (SNPs) in the intergenic regions LOC389203IRBPJ, LOC100131131|IL1R1, KIAA1919|REV3L, LOC643749|TRAF3IP2, and SNPs in the intron and untranslated regions (UTR) of IRF1 and the intronic region of ICOS and KIAA1542 showed association with RA (p < 5 × 10−5). Of the SNPs previously associated with RA in Caucasians, one SNP rs874040, locating to the intergenic region LOC389203|RBPJ was replicated in this study. None of the variants in the PTPN22 gene was significantly associated. The seropositive subgroups showed similar results to the overall cohort. The effects observed across the HLA region are most likely due to HLA-DRB1, and secondary effects in the extended MHC cannot be detected. Seven non-HLA loci are associated with RA in black South Africans. Similar to Caucasians, the intergenic region between LOC38920 and RBPJ is associated with RA in this population. The strong association of the R620W variant of the PTPN22 gene with RA in Caucasians was not replicated since this variant was monomorphic in our study, but other SNP variants of the PTPN22 gene were also not associated with RA in black South Africans, suggesting that this locus does not play a major role in RA in this population.
Nature Communications | 2017
Ananyo Choudhury; Michele Ramsay; Scott Hazelhurst; Shaun Aron; Soraya Bardien; Gerrit Botha; Emile R. Chimusa; Alan Christoffels; Junaid Gamieldien; Mahjoubeh J. Sefid-Dashti; Fourie Joubert; Ayton Meintjes; Nicola Mulder; Raj Ramesar; Jasper Rees; Kathrine Scholtz; Dhriti Sengupta; Himla Soodyall; Philip Venter; Louise Warnich; Michael S. Pepper
The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease.African populations show a high level of genetic diversity and extensive regional admixture. Here, the authors sequence the whole genomes of 24 South African individuals of different ethnolinguistic origin and find substantive genomic divergence between two southeastern Bantu-speaking groups.
Genome Biology and Evolution | 2016
Dhriti Sengupta; Ananyo Choudhury; Analabha Basu; Michele Ramsay
Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto–Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India.
PLOS Computational Biology | 2017
C. Victor Jongeneel; Ovokeraye Achinike-Oduaran; Ezekiel Adebiyi; Marion O. Adebiyi; Seun Adeyemi; Bola Akanle; Shaun Aron; Efejiro Ashano; Hocine Bendou; Gerrit Botha; Emile R. Chimusa; Ananyo Choudhury; Ravikiran Donthu; Jenny Drnevich; Oluwadamila Falola; Christopher J. Fields; Scott Hazelhurst; Liesl M. Hendry; Itunuoluwa Isewon; Radhika S. Khetani; Judit Kumuthini; Magambo Phillip Kimuda; Lerato Magosi; Liudmila Sergeevna Mainzer; Suresh Maslamoney; Mamana Mbiyavanga; Ayton Meintjes; Danny Mugutso; Phelelani T. Mpangase; Richard J. Munthali
The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.
Nutrition & Diabetes | 2018
Venesa Sahibdeen; Nigel J. Crowther; Himla Soodyall; Liesl M. Hendry; Richard J. Munthali; Scott Hazelhurst; Ananyo Choudhury; Shane A. Norris; Michele Ramsay; Zané Lombard
ObjectiveThe latest genome-wide association studies of obesity-related traits have identified several genetic loci contributing to body composition (BC). These findings have not been robustly replicated in African populations, therefore, this study aimed to assess whether European BC-associated gene loci played a similar role in a South African black population.MethodsA replication and fine-mapping study was performed in participants from the Birth to Twenty cohort (N = 1,926) using the Metabochip. Measurements included body mass index (BMI), waist and hip circumference, waist-to-hip ratio (WHR), total fat mass, total lean mass and percentage fat mass (PFM).ResultsSNPs in several gene loci, including SEC16B (Padj < 9.48 × 10−7), NEGR1 (Padj < 1.64 × 10−6), FTO (Padj < 2.91 × 10−5), TMEM18 (Padj < 2.27 × 10−5), and WARS2(Padj < 3.25 × 10−5) were similarly associated (albeit not at array-wide signficance (P ≤ 6.7 × 10−7) with various phenotypes including fat mass, PFM, WHR linked to BC in this African cohort, however the associations were driven by different sentinel SNPs. More importantly, DXA-derived BC measures revealed stronger genetic associations than simple anthropometric measures. Association signals generated in this study were shared by European and African populations, as well as unique to this African cohort. Moreover, sophisticated estimates like DXA measures enabled an enhanced characterisation of genetic associations for BC traits.ConclusionResults from this study suggest that in-depth genomic studies in larger African cohorts may reveal novel SNPs for body composition and adiposity, which will provide greater insight into the aetiology of obesity.