Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anastasia L. Elias is active.

Publication


Featured researches published by Anastasia L. Elias.


Biomacromolecules | 2011

Bioplastics from Feather Quill

Aman Ullah; Thavaratnam Vasanthan; Anastasia L. Elias; Jianping Wu

Poultry feather quills have been extruded in a twin screw extruder with sodium sulfite treatment as a reducing agent. The effect of four different plasticizers (ethylene glycol, propylene glycol, glycerol, and diethyl tartrate) on the thermoplastic properties was then investigated. Conformational changes and plasticizer-protein interactions in the extruded resins were assessed by Fourier transform infrared spectroscopy (FTIR), while viscoelastic behavior of the quill keratin plasticized with different plasticizers was investigated by dynamic mechanical analysis (DMA). Differential scanning calorimetry (DSC) was used to determine the effect of different plasticizers on protein denaturation. Thermal degradation patterns of the extrudates were studied by thermogravimetric analysis (TGA). The effect of plasticizers on the mechanical properties of resins was also assessed by tensile strength measurements. Results indicated that ethylene glycol was able to interact more effectively with quill keratin at the molecular level, exhibiting only one sharp glass transition, better mechanical properties, and higher transparency compared to other plasticized resins. The two phases found in glycerol plasticized material were attributed to glycerol-rich and protein-rich zones. Propylene glycol and diethyl tartrate exhibited lower H-bonding interactions and showed wide transition regions in DMA profiles during heating, suggesting weak and heterogeneous interactions between quill keratin and these plasticizers.


Journal of Materials Science | 2016

Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies

Kenneth D. Harris; Anastasia L. Elias; Hyun-Joong Chung

Flexible electronics incorporate all the functional attributes of conventional rigid electronics in formats that have been altered to survive mechanical deformations. Understanding the evolution of device performance during bending, stretching, or other mechanical cycling is, therefore, fundamental to research efforts in this area. Here, we review the various classes of flexible electronic devices (including power sources, sensors, circuits and individual components) and describe the basic principles of device mechanics. We then review techniques to characterize the deformation tolerance and durability of these flexible devices, and we catalogue and geometric designs that are intended to optimize electronic systems for maximum flexibility.


Physical Medicine and Rehabilitation Clinics of North America | 2014

Functional Electrical Stimulation and Spinal Cord Injury

Chester H. Ho; Anastasia L. Elias; Kevin L. Kilgore; Anthony F. DiMarco; Kath M. Bogie; Albert H. Vette; Musa L. Audu; Rudi Kobetic; Sarah R. Chang; K. Ming Chan; Sean P. Dukelow; Dennis J. Bourbeau; Steven W. Brose; Kenneth J. Gustafson; Zelma H.T. Kiss; Vivian K. Mushahwar

Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.


Journal of Materials Chemistry | 2006

Photopatterned liquid crystalline polymers for microactuators

Anastasia L. Elias; Kenneth D. Harris; Cees W. M. Bastiaansen; D.J. Broer; Michael J. Brett

We have investigated the properties of thermally-responsive, patterned liquid crystalline polymers as their dimensions are scaled to a size suitable for use in microelectromechanical systems. All samples were fabricated using surface alignment and photopatterning techniques that can be used to produce integrated devices anchored on a substrate. The thermomechanical properties of free-standing macroscopic samples with varying concentration of crosslinking molecules were investigated in order to optimize the thermal response of the material. It was found that samples containing 12% crosslinker were able to expand by up 19% when heated. The thermomechanical properties of surface-anchored films were also investigated, and it was found that by employing a polymerized cholesteric structure of the liquid crystalline units a thermal expansion of up to 11% could be achieved when the sample was heated to 200 °C. Patternability was demonstrated using a simple photopatterning process that was used to fabricate samples consisting of lines of cholesteric material on a bare substrate, or alternating regions of liquid crystalline polymer in the isotropic and cholesteric phases. Actuation of these films was also demonstrated.


Scientific Reports | 2016

Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

Preetam Anbukarasu; Dominic Sauvageau; Anastasia L. Elias

Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.


Journal of Micromechanics and Microengineering | 2005

Large-area microfabrication of three-dimensional, helical polymer structures

Anastasia L. Elias; Kenneth D. Harris; Cees W. M. Bastiaansen; D.J. Broer; Michael J. Brett

A technique has been developed to fabricate polymeric helices with sub-micron dimensions. These helices are made using a double-templating process, in which an inorganic thin film deposited using glancing angle deposition acts as the master. The shape, pitch, handedness and number of turns of the polymer helices can be tuned by altering the deposition parameters of the master film. The structure of this positive master is copied into a negative intermediate template of photoresist, which itself acts as a master for the templating of polymer helices. This process is demonstrated with four multifunctional acrylates. The master, intermediate template and polymer helices are characterized using scanning electron microscopy, and the polymer helices are characterized using energy dispersive x-ray spectroscopy. It is shown that a large number of polymer helical microstructures, which are anchored to both a thick substrate and a thin capping layer, can be made in parallel over areas of mm2 to cm2.


IEEE\/ASME Journal of Microelectromechanical Systems | 2004

Fabrication of helically perforated gold, nickel, and polystyrene thin films

Anastasia L. Elias; Kenneth D. Harris; Michael J. Brett

Helical microstructures are of interest for MEMS devices because of their spring-like shape. However, helices with micron and submicron dimensions are difficult to engineer using conventional processing techniques where patterning is accomplished lithographically. In this paper, we report the fabrication of porous gold, nickel, and polystyrene thin films with helical pore architectures. All films were made using a replication process, in which a thin film comprised of independent helical microstructures acted as the template. Filling of the template with metals was achieved by electroplating through the microstructures, whereas filling with polystyrene was achieved by capillary action. Porous films were produced from these composites by wet etch removal of the template material. Typical helical pores were on the order of 100 nm in diameter and extended through a film 1 /spl mu/m to 2 /spl mu/m thick. These films were generally more robust than the films from which they were templated, since they consisted of a solid network with helical pores rather than individual structures. Polymer and metal films with helical pores could be used for sensor and catalytic devices that take advantage of the chemical properties of these materials. Polymer films are also of interest for mechanical sensor and actuator devices since they are expected to be more compliant than both traditional MEMS materials and the films from which they were templated.


ACS Applied Materials & Interfaces | 2016

Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces

Chanchan Wang; Dominic Sauvageau; Anastasia L. Elias

A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind phages from the suspension.


Biomacromolecules | 2014

Hyaluronic acid-based 3D culture model for in vitro testing of electrode biocompatibility.

Andrea F. Jeffery; Matthew A. Churchward; Vivian K. Mushahwar; Kathryn G. Todd; Anastasia L. Elias

This work describes the development of a robust and repeatable in vitro 3D culture model of glial scarring, which may be used to evaluate the foreign body response to electrodes and other implants in the central nervous system. The model is based on methacrylated hyaluronic acid, a hydrogel that may be photopolymerized to form an insoluble network. Hydrogel scaffolds were formed at four different macromer concentrations (0.50, 0.75, 1.00, and 1.50% (w/v)). As expected, the elastic modulus of the scaffolds increased with increasing macromer weight fraction. Adult rat brain tested under identical conditions had an elastic modulus range that spanned the elastic modulus of both the 0.50 and 0.75% (w/v) hydrogel samples. Gels formed with higher macromer weight fraction had decreased equilibrium swelling ratio and visibly thicker pore walls relative to gels formed with lower macromer weight fractions. Mixed glial cells (microglia and astrocytes) were then encapsulated in the HA scaffolds. Viability of the mixed cultures was most stable at a cell density of 1 × 10(7) cells/mL. Cell viability at the highest macromer weight fraction tested (1.50% (w/v)) was significantly lower than other tested gels (0.50, 0.75 and 1.00% (w/v)). The inflammatory response of microglia and astrocytes to a microelectrode inserted into the scaffold was assessed over a period of 2 weeks and closely represented that reported in vivo. Microglia responded first to the electrode (increased cell density at the electrode, and activated morphology) followed by astrocytes (appeared to line the electrode in a manner similar to glial scarring). All together, these results demonstrate the potential of the 3D in vitro model system to assess glial scarring in a robust and repeatable manner.


IEEE Transactions on Biomedical Engineering | 2013

Development of Surrogate Spinal Cords for the Evaluation of Electrode Arrays Used in Intraspinal Implants

Cheng Cheng; Jonn Kmech; Vivian K. Mushahwar; Anastasia L. Elias

We report the development of a surrogate spinal cord for evaluating the mechanical suitability of electrode arrays for intraspinal implants. The mechanical and interfacial properties of candidate materials (including silicone elastomers and gelatin hydrogels) for the surrogate cord were tested. The elastic modulus was characterized using dynamic mechanical analysis, and compared with values of actual human spinal cords from the literature. Forces required to indent the surrogate cords to specified depths were measured to obtain values under static conditions. Importantly, to quantify surface properties in addition to mechanical properties normally considered, interfacial frictional forces were measured by pulling a needle out of each cord at a controlled rate. The measured forces were then compared to those obtained from rat spinal cords. Formaldehyde-crosslinked gelatin, 12 wt% in water, was identified as the most suitable material for the construction of surrogate spinal cords. To demonstrate the utility of surrogate spinal cords in evaluating the behavior of various electrode arrays, cords were implanted with two types of intraspinal electrode arrays (one made of individual microwires and another of microwires anchored with a solid base), and cord deformation under elongation was evaluated. The results demonstrate that the surrogate model simulates the mechanical and interfacial properties of the spinal cord, and enables in vitro screening of intraspinal implants.

Collaboration


Dive into the Anastasia L. Elias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees W. M. Bastiaansen

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk J. Broer

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge