Anastasia L. Sowers
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anastasia L. Sowers.
American Journal of Pathology | 2002
Kathleen C. Flanders; Catherine D. Sullivan; Makiko Fujii; Anastasia L. Sowers; Mario A. Anzano; Alidad Arabshahi; Christopher Major; Chu-Xia Deng; Angelo Russo; James B. Mitchell; Anita B. Roberts
Transforming growth factor-beta (TGF-beta) plays a central role in the pathogenesis of inflammatory and fibrotic diseases, including radiation-induced fibrosis. We previously reported that mice null for Smad3, a key downstream mediator of TGF-beta, show accelerated healing of cutaneous incisional wounds with reduced inflammation and accumulation of matrix. To determine if loss of Smad3 decreases radiation-induced injury, skin of Smad3+/+ [wild-type (WT)] and -/- [knockout (KO)] mice was exposed to a single dose of 30 to 50 Gy of gamma-irradiation. Six weeks later, skin from KO mice showed significantly less epidermal acanthosis and dermal influx of mast cells, macrophages, and neutrophils than skin from WT littermates. Skin from irradiated KO mice exhibited less immunoreactive TGF-beta and fewer myofibroblasts, suggesting that these mice will have a significantly reduced fibrotic response. Although irradiation induced no change in the immunohistochemical expression of the TGF-beta type I receptor, the epidermal expression of the type II receptor was lost after irradiation whereas its dermal expression remained high. Primary keratinocytes and dermal fibroblasts prepared from WT and KO mice showed similar survival when irradiated, as did mice exposed to whole-body irradiation. These results suggest that inhibition of Smad3 might decrease tissue damage and reduce fibrosis after exposure to ionizing irradiation.
American Journal of Pathology | 2003
Kathleen C. Flanders; Christopher Major; Alidad Arabshahi; Ekinadese E. Aburime; Miya H. Okada; Makiko Fujii; Timothy D. Blalock; Gregory S. Schultz; Anastasia L. Sowers; Mario A. Anzano; James B. Mitchell; Angelo Russo; Anita B. Roberts
Transforming growth factor (TGF)-beta regulates many aspects of wound repair including inflammation, chemotaxis, and deposition of extracellular matrix. We previously showed that epithelialization of incisional wounds is accelerated in mice null for Smad3, a key cytoplasmic mediator of TGF-beta signaling. Here, we investigated the effects of loss of Smad3 on healing of wounds in skin previously exposed to ionizing radiation, in which scarring fibrosis complicates healing. Cutaneous wounds made in Smad3-null mice 6 weeks after irradiation showed decreased wound widths, enhanced epithelialization, and reduced numbers of neutrophils and myofibroblasts compared to wounds in irradiated wild-type littermates. Differences in breaking strength of wild-type and Smad3-null wounds were not significant. As shown previously for neutrophils, chemotaxis of primary dermal fibroblasts to TGF-beta required Smad3, but differentiation of fibroblasts to myofibroblasts by TGF-beta was independent of Smad3. Previous irradiation-enhanced induction of connective tissue growth factor mRNA in wild-type, but not Smad3-null fibroblasts, suggested that this may contribute to the heightened scarring in irradiated wild-type skin as demonstrated by Picrosirius red staining. Overall, the data suggest that attenuation of Smad3 signaling might improve the healing of wounds in previously irradiated skin commensurate with an inhibition of fibrosis.
Clinical Cancer Research | 2010
James B. Mitchell; Rajani Choudhuri; Kristin M. Fabre; Anastasia L. Sowers; Deborah Citrin; Sonya Zabludoff; John A. Cook
Purpose: Inhibition of checkpoint kinase 1 has been shown to enhance the cytotoxicity of DNA-damaging targeted chemotherapy through cell cycle checkpoint abrogation and impaired DNA damage repair. A novel checkpoint kinase 1/2 inhibitor, AZD7762, was evaluated for potential enhancement of radiosensitivity for human tumor cells in vitro and in vivo xenografts. Experimental Design: Survival of both p53 wild-type and mutant human cell lines was evaluated by clonogenic assay. Dose modification factors (DMF) were determined from survival curves (ratio of radiation doses for control versus drug treated at 10% survival). Flow cytometry, Western blot, and radiation-induced tumor regrowth delay assays were conducted. Results: AZD7762 treatment enhanced the radiosensitivity of p53-mutated tumor cell lines (DMFs ranging from 1.6-1.7) to a greater extent than for p53 wild-type tumor lines (DMFs ranging from 1.1-1.2). AZD7762 treatment alone exhibited little cytotoxicity to any of the cell lines and did not enhance the radiosensitivity of normal human fibroblasts (1522). AZD7762 treatment abrogated radiation-induced G2 delay, inhibited radiation damage repair (assessed by γ-H2AX), and suppressed radiation-induced cyclin B expression. HT29 xenografts exposed to five daily radiation fractions and to two daily AZD7762 doses exhibited significant radiation enhancement compared with radiation alone. Conclusions: AZD7762 effectively enhanced the radiosensitivity of mutated p53 tumor cell lines and HT29 xenografts and was without untoward toxicity when administered alone or in combination with radiation. The results of this study support combining AZD7762 with radiation in clinical trials. Clin Cancer Res; 16(7); 2076–84. ©2010 AACR.
Clinical Cancer Research | 2006
Ken-ichiro Matsumoto; Fuminori Hyodo; Atsuko Matsumoto; Alan P. Koretsky; Anastasia L. Sowers; James B. Mitchell; Murali C. Krishna
Purpose: There is considerable research directed toward the identification and development of functional contrast agents for medical imaging that superimpose tissue biochemical/molecular information with anatomical structures. Nitroxide radicals were identified as in vivo radioprotectors. Being paramagnetic, they can provide image contrast in magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). The present study sought to determine the efficacy of nitroxide radioprotectors as functional image contrast agents. Experimental Design: Nitroxide radioprotectors, which act as contrast agents, were tested by EPRI and MRI to provide tissue redox status information noninvasively. Results: Phantom studies showed that the nitroxide, 3-carbamoyl-PROXYL (3CP), undergoes time-dependent reduction to the corresponding diamagnetic hydroxylamine only in the presence of reducing agents. The reduction rates of 3CP obtained by EPRI and MRI were in agreement suggesting the feasibility of using MRI to monitor nitroxide levels in tissues. The levels of 3CP were examined by EPRI and MRI for differences in reduction between muscle and tumor (squamous cell carcinoma) implanted in the hind leg of C3H mice simultaneously. In vivo experiments showed a T1-dependent image intensity enhancement afforded by 3CP which decreased in a time-dependent manner. Reduction of 3CP was found to be the dominant mechanism of contrast loss. The tumor regions exhibited a faster decay rate of the nitroxide compared to muscle (0.097 min-1 versus 0.067 min-1, respectively). Conclusions: This study shows that MRI can be successfully used to co-register tissue redox status along with anatomic images, thus providing potentially valuable biochemical information from the region of interest.
Clinical Cancer Research | 2007
Ana P. Cotrim; Fuminori Hyodo; Ken-ichiro Matsumoto; Anastasia L. Sowers; John A. Cook; Bruce J. Baum; Murali C. Krishna; James B. Mitchell
Purpose: The nitroxide free radical, Tempol, was evaluated for potential differential radiation protection of salivary glands and tumor using fractionated radiation. Mechanistic information was explored by monitoring the presence and bioreduction of Tempol in both tissues noninvasively by magnetic resonance imaging (MRI). Experimental Design: Female C3H mice were immobilized using custom-made Lucite jigs for localized irradiation (five daily fractions) either to the oral cavity or tumor-bearing leg. Tempol (275 mg/kg) was administered (i.p.) 10 min before each radiation fraction. Salivary gland damage was assessed 8 weeks after radiation by measuring pilocarpine-mediated saliva output. Tumor growth was assessed by standard radiation regrowth methods. Dynamic T1-weighted magnetic resonance scans were acquired before and after Tempol injection using a 4.7T animal MRI instrument. Results: Tempol treatment was found to protect salivary glands significantly against radiation damage (∼60% improvement); whereas no tumor protection was observed. Intracellular reduction of Tempol to the nonradioprotective hydroxylamine as assessed by MRI was 2-fold faster in tumor compared with salivary glands or muscle. Conclusions: Tempol provided salivary gland radioprotection and did not protect tumor, consistent with the hypothesis that differential radioprotection by Tempol resides in faster reduction to the nonradioprotective hydroxylamine in tumor compared with normal tissues. The unique paramagnetic properties of Tempol afforded noninvasive MRI monitoring of dynamic changes of Tempol levels in tissue to support the finding. These data support further development and consideration of Tempol for human clinical trials as a selective protector against radiation-induced salivary gland damage.
Magnetic Resonance in Medicine | 2005
Atsuko Matsumoto; Shingo Matsumoto; Anastasia L. Sowers; Janusz Koscielniak; Nancy J. Trigg; Periannan Kuppusamy; James B. Mitchell; Sankaran Subramanian; Murali C. Krishna; Ken-ichiro Matsumoto
The absolute partial pressure of oxygen (pO2) in the mammary gland pad and femoral muscle of female mice was measured using EPR oximetry at 700 MHz. A small quantity of lithium phthalocyanine (LiPc) crystals was implanted in both mammary and femoral muscle tissue of female C3H mice. Subsequent EPR measurements were carried out 1–30 days after implantation with or without control of core body temperature. The pO2 values in the tissue became stable 2 weeks after implantation of LiPc crystals. The pO2 level was found to be higher in the femoral muscle than in the mammary tissue. However, the pO2 values showed a strong dependence on the core body temperature of the mice. The pO2 values were responsive to carbogen (95% O2, 5% CO2) breathing even 44–58 days after the implantation of LiPc. The LiPc linewidth was also sensitive to changes in the blood supply even 60 days after implantation of the crystals. This study further validates the use of LiPc crystals and EPR oximetry for long‐term non‐invasive assessment of pO2 levels in tissues, underscores the importance of maintaining normal body core temperature during the measurements, and demonstrates that mammary tissue functions at a lower pO2 level than muscle in female C3H mice. Magn Reson Med, 2005. Published 2005 Wiley‐Liss, Inc.
Clinical Cancer Research | 2004
Hisataka Kobayashi; Koen Reijnders; Sean English; Alexander T. Yordanov; Diane E. Milenic; Anastasia L. Sowers; Deborah Citrin; Murali C. Krishna; Thomas A. Waldmann; James B. Mitchell; Martin W. Brechbiel
Permeability of tumor vasculature can be a major barrier to successful drug delivery, particularly for high molecular weight agents such as monoclonal antibodies and their diagnostic or therapeutic conjugates. In this study, changes in permeability of SCCVII tumor vessels after radiation treatment were evaluated by dynamic magnetic resonance imaging as a function of time after irradiation using a generation-8 polyamidoamine dendrimer (G8-Gd-D)-based magnetic resonance imaging contrast agent shown previously to be confined to tumor blood vessels. Tumor irradiation consisted of either single doses (2–15 Gy) or various daily fractionated doses (5 days). A single radiation dose of 15 Gy resulted in significant transient image enhancement of the tumor tissue with a maximum occurring between 7 and 24 hours after radiation treatment. No observable enhancement was recorded for fractionated radiation doses. Use of dynamic magnetic resonance imaging coupled with G8-Gd-D provides an exquisite methodology capable of defining the timing of enhanced permeability of macromolecules in tumors after irradiation. Such information might be applied to optimize the efficacy of subsequent or concurrent therapies including radiolabeled antibodies or other anticancer agents in combination with external beam therapies.
Clinical Cancer Research | 2004
Joseph M. Vitolo; Ana P. Cotrim; Anastasia L. Sowers; Angelo Russo; Robert B. Wellner; Stanley R. Pillemer; James B. Mitchell; Bruce J. Baum
Purpose: Radiotherapy is commonly used to treat a majority of patients with head and neck cancers. The long-term radiation-induced reduction of saliva output significantly contributes to the posttreatment morbidity experienced by these patients. The purpose of this study was to test the ability of the stable-free radical Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), an established radioprotector, to prevent radiation-induced salivary hypofunction in mice. Experimental Design: The heads of C3H mice were exposed to a range of single radiation doses with or without an i.p. injection of 275 mg/kg Tempol 10 min before treatment. Salivary gland output was assessed 8 weeks postirradiation. Results: Radiation caused a dose-dependent reduction in salivary flow in this model. Tempol treatment alone significantly reduced radiation-induced salivary hypofunction. The combination of Tempol with mouth/nose shielding showed essentially complete radiation protection at 15 Gy and ∼75% protection at 17.5 Gy. Conclusions: This study demonstrates for the first time that significant radioprotection of the salivary glands is possible with Tempol in C3H mice.
Journal of Pharmacy and Pharmacology | 2008
Fuminori Hyodo; Benjamin P. Soule; Ken-ichiro Matsumoto; Shingo Matusmoto; John A. Cook; Emi Hyodo; Anastasia L. Sowers; Murali C. Krishna; James B. Mitchell
Regulation of tissue redox status is important to maintain normal physiological conditions in the living body. Disruption of redox homoeostasis may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders and ageing. Therefore, imaging of tissue redox status could have clinical applications. Redox imaging employing magnetic resonance imaging (MRI) with nitroxides as cell‐permeable redox‐sensitive contrast agents has been used for non‐invasive monitoring of tissue redox status in animal models. The redox imaging applications of nitroxide electron paramagnetic resonance imaging (EPRI) and MRI are reviewed here, with a focus on application of tumour redox status monitoring. While particular emphasis has been placed on differences in the redox status in tumours compared to selected normal tissues, the technique possesses the potential to have broad applications to the study of other disease states, inflammatory processes and other circumstances where oxidative stress is implicated.
Clinical Cancer Research | 2013
Amanda Herzog; Yansong Bian; Robert Vander Broek; Bradford Hall; Jamie Coupar; Hui Cheng; Anastasia L. Sowers; John D. Cook; James B. Mitchell; Zhong Chen; Ashok B. Kulkarni; Carter Van Waes
Purpose: Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K/mTOR–targeted agents. Experimental Design: In this preclinical study, PI3K/Akt/mTOR signaling was characterized in nine HNSCC (UM-SCC) cell lines and human oral keratinocytes. We investigated the molecular and anticancer effects of dual PI3K/mTOR inhibitor PF-04691502(PF-502) in UM-SCC expressing PIK3CA with decreased wild-type TP53, mutant TP53−/+ mutantTGFBR2, and in HNSCC of a conditional Pten/Tgfbr1 double knockout mouse model displaying PI3K/Akt/mTOR activation. Results: UM-SCC showed increased PIK3CA expression and Akt/mTOR activation, and PF-502 inhibited PI3K/mTORC1/2 targets. In human HNSCC expressing PIK3CA and decreased wtTP53 and p73, PF-502 reciprocally enhanced TP53/p73 expression and growth inhibition, which was partially reversible by p53 inhibitor pifithrin-α. Most UM-SCC with wtTP53 exhibited a lower IC50 than those with mtTP53 status. PF-502 blocked growth in G0–G1 and increased apoptotic sub-G0 DNA. PF-502 suppressed tumorigenesis and showed combinatorial activity with radiation in a wild-type TP53 UM-SCC xenograft model. PF-502 also significantly delayed HNSCC tumorigenesis and prolonged survival of Pten/Tgfbr1-deficient mice. Significant inhibition of p-Akt, p-4EBP1, p-S6, and Ki67, as well as increased p53 and TUNEL were observed in tumor specimens. Conclusions: PI3K-mTOR inhibition can enhance TP53/p73 expression and significantly inhibit tumor growth alone or when combined with radiation in HNSCC with wild-type TP53. PIK3CA, TP53/p73, PTEN, and TGF-β alterations are potential modifiers of response and merit investigation in future clinical trials with PI3K-mTOR inhibitors. Clin Cancer Res; 19(14); 3808–19. ©2013 AACR.