Anastasia V. Badeka
University of Ioannina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anastasia V. Badeka.
Meat Science | 2011
Ioannis K. Karabagias; Anastasia V. Badeka; Michael G. Kontominas
The effect of thyme (TEO) and oregano (OEO) essential oils as well as modified atmosphere packaging (MAP) in extending the shelf life of fresh lamb meat stored at 4 °C was investigated. In a preliminary experiment TEO and OEO were used at concentrations 0.1 and 0.3% v/w while MAP tested included MAP1 (60% CO(2)/40% N(2)) and MAP2 (80% CO(2)/20% N(2)). Microbiological, physicochemical and sensory properties of lamb meat were monitored over a 20 day period. Sensory analysis showed that at the higher concentration both essential oils gave a strong objectionable odour and taste and were not further used. Of the two essential oils TEO was more effective as was MAP2 over MAP1 for lamb meat preservation. In a second experiment the combined effect of TEO (0.1%) and MAP2 (80/20) on shelf life extension of lamb meat was evaluated over a 25 day storage period. Microbial populations were reduced up to 2.8 log cfu/g on day 9 of storage with the most pronounced effect being achieved by the combination MAP2 plus TEO (0.1%). TBA values varied for all treatments and remained lower than 4 mg MDA/kg throughout storage. pH values varied between 6.4 and 6.0 during storage. Color parameters (L and b) increased with storage time while parameter (a) remained unaffected. Based primarily on sensory analysis (odour) but also on microbiological data, shelf life of lamb meat was 7 days for air packaged samples, 9-10 days for samples containing 0.1% of TEO and 21-22 days for MAP packaged samples containing 0.1% TEO.
Food Microbiology | 2008
Apostolos Patsias; Anastasia V. Badeka; Ioannis N. Savvaidis; Michael G. Kontominas
The effect of short-term frozen storage prior to thawing on the quality of freeze-chilled chicken fillets was investigated, as was the effect of modified atmosphere packaging (MAP). Four process treatments were used: (1) fresh chicken chilled at 4 degrees C without previous freezing, (2) freeze-chilled for 7 days and thawed at 4 degrees C, (3) chilled at 4 degrees C packaged under MAP (70% N(2)-30%CO(2)), and (4) packaged under MAP, freeze-chilled for 7 days and thawed at 4 degrees C. Microbiological, chemical and sensory analyses were conducted on samples for a period up to 15 days. Freeze-chilled fillets gave a lower total viable count (TVC) at a given sampling day than chilled fillets. MAP, as expected, delayed microbial growth. The Pseudomonads were the dominant microbial species in fillets under aerobic conditions. MAP reduced the populations of Pseudomonads by 2-4 log cfu/g. Lactic acid bacteria (LAB) and Enterobacteriaceae increased progressively for all treatments throughout storage. Yeasts and molds were inhibited by MAP and by freeze chilling. Total volatile basic nitrogen (TVB-N) values increased rapidly for the chilled fillets but remained significantly lower for the freeze-chilled and the MA-packaged samples. MAP and especially freeze chilling enhanced drip loss. MAP did not affect redness or yellowness of product while freeze chilling decreased product redness. Lightness was not affected by either MAP or freeze chilling. Based on taste, which proved to be the most sensitive sensory attribute, shelf life of product ranged from 6 to 7 days for all treatments leading to the conclusion that freeze chilling is a suitable technology for fresh chicken fillets enabling their distribution as a frozen product and upon subsequent thawing at their final destination, their retail display as chilled products. MAP in combination with freeze chilling had a negligible effect on product quality.
Toxicon | 2010
Artemis P. Louppis; Anastasia V. Badeka; Panagiota Katikou; Evangelos K. Paleologos; Michael G. Kontominas
An approach involving both chemical and biological methods was undertaken for the detection and quantification of the marine toxins okadaic acid (OA), dinophysistoxin-1 (DTX-1) and their respective esters in mussels from different sampling sites in Greece during the period 2006-2007. Samples were analyzed by means of a) high performance liquid chromatography with fluorometric detection (HPLC-FLD), using 9-athryldiazomethane (ADAM), as a pre-column derivatization reagent, b) liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and c) the mouse bioassay. Free OA and DTX-1 were determined by both HPLC-FLD and LC-MS/MS, while their respective esters were determined only by LC-MS/MS after alkaline hydrolysis of the samples. The detection limit (L.O.D.) and quantification limit (L.O.Q.) of the HPLC-FLD method were 0.015 microg/g HP and 0.050 microg/g HP, respectively, for OA. The detection limit (L.O.D.) and quantification limit (L.O.Q.) of the LC-MS/MS method were 0.045 microg/g HP and 0.135 microg/g HP, respectively, for OA. Comparison of results between the two analytical methods showed excellent agreement (100%), while both HPLC-FLD and LC-MS/MS methods showed an agreement of 97.1% compared to the mouse bioassay.
Food Chemistry | 2014
Ioannis K. Karabagias; Anastasia V. Badeka; Stavros Kontakos; Sofia Karabournioti; Michael G. Kontominas
The aim of the present study was to investigate the possibility of characterisation and classification of Greek unifloral honeys (pine, thyme, fir and orange blossom) according to botanical origin using volatile compounds, conventional physico-chemical parameters and chemometric analyses (MANOVA and Linear Discriminant Analysis). For this purpose, 119 honey samples were collected during the harvesting period 2011 from 14 different regions in Greece known to produce unifloral honey of good quality. Physico-chemical analysis included the identification and semi quantification of fifty five volatile compounds performed by Headspace Solid Phase Microextraction coupled to gas chromatography/mass spectroscopy and the determination of conventional quality parameters such as pH, free, lactonic, total acidity, electrical conductivity, moisture, ash, lactonic/free acidity ratio and colour parameters L, a, b. Results showed that using 40 diverse variables (30 volatile compounds of different classes and 10 physico-chemical parameters) the honey samples were satisfactorily classified according to botanical origin using volatile compounds (84.0% correct prediction), physicochemical parameters (97.5% correct prediction), and the combination of both (95.8% correct prediction) indicating that multi element analysis comprises a powerful tool for honey discrimination purposes.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2002
Antonios E. Goulas; Kyriakos A. Riganakos; Anastasia V. Badeka; Michael G. Kontominas
The effect of γ -radiation doses (5, 10, 30 kGy) on the mechanical properties, gas and water vapour permeability, infrared (IR) spectra, and overall migration into aqueous and alternative fatty food simulants of commercial monolayer flexible packaging films ethylene vinyl acetate (EVA), high-density polyethylene (HDPE), polystyrene (PS), bi-axially oriented polypropylene (BOPP), low-density polyethylene (LDPE) and Ionomer was studied. For comparison purposes, respective non-irradiated (control) films were also studied. The results showed that radiation doses of 5, 10 and 30 kGy did not induce any statistically significant changes in the permeability of all studied films to gases (oxygen and carbon dioxide) and water vapour. Likewise, IR spectra of all studied films showed no significant differences after all absorbed doses. The mechanical properties (tensile strength, percentage elongation at break and Youngs modulus) of all studied films remained unaffected after absorbed doses of 5 and 10 kGy. In contrast, the tensile strength of HDPE, BOPP and Ionomer films irradiated at a dose of 30kGy decreased. In addition, the percentage elongation at break of LDPE and Ionomer films irradiated at a dose of 30 kGy decreased while Youngs modulus of all samples remained unaffected. All mechanical properties of PS and EVA films remained unaffected after radiation at 30 kGy. Radiation (all absorbed doses) resulted in no statistically significant differences in overall migration values into distilled water for all studied films. For 3% aqueous acetic acid, absorbed doses of 5 and 10 kGy did not affect overall migration values of all investigated samples with the exception of the Ionomer film, for which the overall migration value decreased at 10 kGy. An absorbed dose of 30 kGy caused an increase in BOPP overall migration values and a decrease in Ionomer overall migration values. In contrast, a dose of 30 kGy induced no changes in overall migration values of EVA, HDPE, LDPE and PS films into the same simulant. There were no statistically significant differences in overall migration values of EVA, PS and LDPE films into iso-octane for all absorbed doses. In contrast, a dose of 30 kGy resulted in an increase in overall migration values of BOPP and a respective decrease in HDPE and Ionomer films.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2005
Stavroula Chytiri; Antonios E. Goulas; Anastasia V. Badeka; Kyriakos A. Riganakos; Michael G. Kontominas
The effects of gamma-irradiation (5–60 kGy) on radiolysis products and sensory changes of experimental five-layer food-packaging films were determined. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25–50% by weight (bw) of the multilayer structure. Respective films containing 100% virgin LDPE as the buried layer were used as controls. Under realistic polymer/food simulant contact conditions during irradiation, a large number of primary and secondary radiolysis products (hydrocarbons, aldehydes, ketones, alcohols, carboxylic acids) were produced. These compounds were detected in the food simulant after contact with all films tested, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food preservation). The type and concentration of radiolysis products increased progressively with increasing dose. Generally, there were no significant differences in radiolysis products between samples containing a buried layer of recycled LDPE and those containing virgin LDPE (all absorbed doses), indicating the good barrier properties of external virgin polymer layers. Volatile and non-volatile compounds produced during irradiation affected the sensory properties of potable water after contact with packaging films. Taste transfer to water was observed mainly at higher doses and was more noticeable for multilayer structures containing recycled LDPE, even though differences were slight.
Meat Science | 2006
Irene Chouliara; John Samelis; Athanasia Kakouri; Anastasia V. Badeka; Ioannis N. Savvaidis; Kyriakos A. Riganakos; Michael G. Kontominas
Changes in microbiological and physicochemical quality attributes resulting from the use of irradiation in the production of Greek dry fermented sausage were investigated as a function of fermentation/ripening time. Results showed that irradiating meat/fat trimmings at 2 or 4kGy prior to sausage production eliminated natural contamination with Listeria spp., and reduced pseudomonads, enterococci and pathogenic staphylococci, and enterobacteria, to less than 2 and 1logcfug(-1), respectively. Pseudomonads were very sensitive (>3.4 log reduction) to either radiation dose. Yeasts were the most resistant followed by inherent lactic acid bacteria; their reductions on the trimmings were radiation dose-dependent. Residual effects of irradiation were noted against enterococci, but not against gram-negatives which died off fast during fermentation even in non-irradiated samples. Growth of the starter bacteria, Lactobacillus pentosus and Staphylococcus carnosus, inoculated in the sausage batters post-irradiation was unaffected by the 2 or 4kGy pre-treatment of the trimmings. Irradiation had little or no effect at the end of ripening period (28 days) on pH, moisture content and color (parameters L(∗), a(∗), and b(∗)). Changes in TBA values were small but statistically significant with irradiated samples having higher TBA values than control samples.
Food Chemistry | 2014
M. Revi; Anastasia V. Badeka; Stavros Kontakos; Michael G. Kontominas
The enological parameters and volatile compounds of white wine packaged in dark coloured glass and two commercial bag-in-box (BIB) pouches (low density polyethylene - LDPE and ethylene vinyl acetate - EVA lined) were determined for a period of 6 months at 20 °C. Parameters monitored included: titratable acidity, volatile acidity, pH, total SO2, free SO2, colour, volatile compounds and sensory attributes. The BIB packaging materials affected the titratable acidity, total and free SO2 and colour of wine. A substantial portion of the wine aroma compounds was adsorbed by the plastic materials or lost to the environment through leakage of the valve fitment. Between the two plastics, the LDPE lined pouch showed a considerably higher aroma sorption as compared to EVA. Wine packaged in glass retained the largest portion of its aroma compounds. Sensory evaluation showed that white wine packaged in both plastics was of acceptable quality for 3 months vs. at least 6 months for that in glass bottles.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2006
Michael G. Kontominas; Antonios E. Goulas; Anastasia V. Badeka; A. Nerantzaki
Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds’ profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l−1, well below the upper limit (60 mg l−1) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l−1, both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100°C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds’ profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1′-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.
Molecules | 2015
Maria V. Vavoura; Anastasia V. Badeka; Stavros Kontakos; Michael G. Kontominas
Volatile compounds, physicochemical and sensory attributes of four sweet cherry cultivars (Canada giant, Ferrovia, Lapins and Skeena) grown in Northern Greece were determined. Eighteen volatile compounds were identified and semi-quantified in cherries using solid phase micro extraction in combination with gas chromatography/mass spectrometry (SPME-GC/MS). Carbonyl compounds were the most abundant in sweet cherry aroma, followed by alcohols, esters and hydrocarbons/terpenes. Cherry cultivars in order of increasing amounts of volatiles were: Lapins < Canada giant < Ferrovia < Skeena. Physicochemical parameters determined included: titratable acidity (TA), pH, total soluble solids (TSS), maturity index (MI) and total phenolic content (TPC). TA ranged between 0.21 and 0.28 g malic acid/100 g fresh weight (FW). The pH ranged between 3.81 and 3.96. TSS ranged between 13.00 and 16.00 °Brix. MI ranged between 51.8 and 75.0. TPC ranged between 95.14 and 170.35 mg gallic acid equivalents (GAE)/100 g FW. Sensory evaluation showed that cherry colour, in order of increasing intensity, was: Canada giant < Ferrovia < Lapins < Skeena. Respective order for cherry firmness was: Canada giant < Lapins ≤ Ferrovia < Skeena and for flavour: Lapins < Canada giant < Skeena ≤ Ferrovia. Correlation of volatiles to physicochemical and sensory attributes showed varying trends.