Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anastasios Bezerianos is active.

Publication


Featured researches published by Anastasios Bezerianos.


IEEE Transactions on Medical Imaging | 2001

Novel Bayesian multiscale method for speckle removal in medical ultrasound images

Alin Achim; Anastasios Bezerianos; Panagiotis Tsakalides

A novel speckle suppression method for medical ultrasound images is presented. First, the logarithmic transform of the original image is analyzed into the multiscale wavelet domain. The authors show that the subband decompositions of ultrasound images have significantly non-Gaussian statistics that are best described by families of heavy-tailed distributions such as the alpha-stable. Then, the authors design a Bayesian estimator that exploits these statistics. They use the alpha-stable model to develop a blind noise-removal processor that performs a nonlinear operation on the data. Finally, the authors compare their technique with current state-of-the-art soft and hard thresholding methods applied on actual ultrasound medical images and they quantify the achieved performance improvement.


IEEE Transactions on Geoscience and Remote Sensing | 2003

SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling

Alin Achim; Panagiotis Tsakalides; Anastasios Bezerianos

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise, which is due to the coherent nature of the scattering phenomenon. This paper proposes a novel Bayesian-based algorithm within the framework of wavelet analysis, which reduces speckle in SAR images while preserving the structural features and textural information of the scene. First, we show that the subband decompositions of logarithmically transformed SAR images are accurately modeled by alpha-stable distributions, a family of heavy-tailed densities. Consequently, we exploit this a priori information by designing a maximum a posteriori (MAP) estimator. We use the alpha-stable model to develop a blind speckle-suppression processor that performs a nonlinear operation on the data and we relate this nonlinearity to the degree of non-Gaussianity of the data. Finally, we compare our proposed method to current state-of-the-art soft thresholding techniques applied on real SAR imagery and we quantify the achieved performance improvement.


Annals of Biomedical Engineering | 2003

Time-dependent entropy estimation of EEG rhythm changes following brain ischemia.

Anastasios Bezerianos; Shanbao Tong; Nitish V. Thakor

AbstractOur approach is motivated by the need to generate a rigorous measure of the degree of disorder (or complexity) of the EEG signal in brain injury. Entropy is a method to quantify the order/disorder of a time series. It is the first time that a time-dependent entropy (TDE) is used in the quantification of brain injury level. The TDE was sensitive enough to monitor the significant changes in the subjects brain rhythms during recovery from global ischemic brain injury. Among the different entropy measures, we used Tsallis entropy. This entropy is parametrized and is able to match with the particular properties of EEG, like long-range rhythms, spikes, and bursts. The method was tested in a signal composed of segments of synthetic signals (Gaussian and uniform distributions) and segments of real signals. The real signal segments were extracted from normal EEG, EEG recordings from early recovery, and normal EEG corrupted by simulated spikes and bursts. Adult Wistar rats were subjected to asphyxia-cardiac arrest for 3 and 5 min. The TDE detected the pattern of ischemia-induced EEG alterations and was able to discriminate the different injury levels. Two parameters seem to be good descriptors of the recovery process; the mean entropy and the variance of the estimate followed opposite trends, with the mean entropy decreasing and its variance increasing with injury.


Physica A-statistical Mechanics and Its Applications | 2002

Nonextensive entropy measure of EEG following brain injury from cardiac arrest

Shanbao Tong; Anastasios Bezerianos; Joseph Suresh Paul; Yi Sheng Zhu; Nitish V. Thakor

The nonextensive entropy measure is developed to study the electroencephalogram (EEG) during the recovery of the brains electrical function from asphyxic cardiac arrest (ACA) injury. The statistical characteristics of the Tsallis-like time-dependent entropy (TDE) for different signal distributions are investigated. Both the mean and the variance of TDE show good specificity to the ACA brain injury and its recovery. ACA brain injury results in a decrease in entropy while a good electrophysiological recovery shows a rapid return to a higher entropy level. There is a reduction in the mean and increase in the variance of TDE after brain injury followed by a gradual recovery upon resuscitation. The nonextensive TDE is expected to provide a novel quantitative EEG strategy for monitoring the brain states.


Journal of Neuroscience Methods | 2001

Removal of ECG interference from the EEG recordings in small animals using independent component analysis

Shanbao Tong; Anastasios Bezerianos; Joseph Suresh Paul; Yi Sheng Zhu; Nitish V. Thakor

In experiments involving small animals, the electroencephalogram (EEG) recorded during severe injury and accompanying resuscitation exhibit the strong presence of electrocardiogram (ECG). For improved quantitative EEG (qEEG) analysis, it is therefore imperative to remove ECG interference from EEG. In this paper, we validate the use of independent component analysis (ICA) to effectively suppress the interference of ECG from EEG recordings during normal activity, asphyxia and recovery following asphyxia. Two channels of EEG from five rats were recorded continuously for 2 h. Simultaneous recording of one channel ECG was also made. Epochs of 4 s and 1 min were selected from baseline, asphyxia and recovery (every 10 min) and their independent components and power spectra were calculated. The improvement in normalized power spectrum of EEG obtained for all animals was 7.71+/-3.63 db at the 3rd minute of recovery and dropped to 1.15+/-0.60 db at 63rd minute. The application of ICA has been particularly useful when the power of EEG is low, such as that observed during early brain hypoxic-asphyxic injury. The method is also useful in situations where accurate indications of EEG signal power and frequency content are needed.


International Journal of Bifurcation and Chaos | 2014

Chimera States in Networks of Nonlocally Coupled Hindmarsh–Rose Neuron Models

Johanne Hizanidis; Vasileios G. Kanas; Anastasios Bezerianos; Tassos Bountis

We have identified the occurrence of chimera states for various coupling schemes in networks of two-dimensional and three-dimensional Hindmarsh–Rose oscillators, which represent realistic models of neuronal ensembles. This result, together with recent studies on multiple chimera states in nonlocally coupled FitzHugh–Nagumo oscillators, provide strong evidence that the phenomenon of chimeras may indeed be relevant in neuroscience applications. Moreover, our work verifies the existence of chimera states in coupled bistable elements, whereas to date chimeras were known to arise in models possessing a single stable limit cycle. Finally, we have identified an interesting class of mixed oscillatory states, in which desynchronized neurons are uniformly interspersed among the remaining ones that are either stationary or oscillate in synchronized motion.


Journal of Theoretical Biology | 2008

A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation.

Adam Kapela; Anastasios Bezerianos; Nikolaos M. Tsoukias

A mathematical model of calcium dynamics in vascular smooth muscle cell (SMC) was developed based on data mostly from rat mesenteric arterioles. The model focuses on (a) the plasma membrane electrophysiology; (b) Ca2+ uptake and release from the sarcoplasmic reticulum (SR); (c) cytosolic balance of Ca2+, Na+, K+, and Cl ions; and (d) IP3 and cGMP formation in response to norepinephrine(NE) and nitric oxide (NO) stimulation. Stimulation with NE induced membrane depolarization and an intracellular Ca2+ ([Ca2+]i) transient followed by a plateau. The plateau concentrations were mostly determined by the activation of voltage-operated Ca2+ channels. NE causes a greater increase in [Ca2+]i than stimulation with KCl to equivalent depolarization. Model simulations suggest that the effect of[Na+]i accumulation on the Na+/Ca2+ exchanger (NCX) can potentially account for this difference.Elevation of [Ca2+]i within a concentration window (150-300 nM) by NE or KCl initiated [Ca2+]i oscillations with a concentration-dependent period. The oscillations were generated by the nonlinear dynamics of Ca2+ release and refilling in the SR. NO repolarized the NE-stimulated SMC and restored low [Ca2+]i mainly through its effect on Ca2+-activated K+ channels. Under certain conditions, Na+-K+-ATPase inhibition can result in the elevation of [Na+]i and the reversal of NCX, increasing resting cytosolic and SR Ca2+ content, as well as reactivity to NE. Blockade of the NCXs reverse mode could eliminate these effects. We conclude that the integration of the selected cellular components yields a mathematical model that reproduces, satisfactorily, some of the established features of SMC physiology. Simulations suggest a potential role of intracellular Na+ in modulating Ca2+ dynamics and provide insights into the mechanisms of SMC constriction, relaxation, and the phenomenon of vasomotion. The model will provide the basis for the development of multi-cellular mathematical models that will investigate microcirculatory function in health and disease.


PLOS ONE | 2014

Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease.

Yu Sun; Qihua Yin; Rong Fang; Xiaoxiao Yan; Ying Wang; Anastasios Bezerianos; Hui-Dong Tang; Fei Miao; Junfeng Sun

Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer’s disease (AD), our understanding about the progression of AD in a functional connectivity (FC) perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI), this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI) patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC) in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics.


Annals of Biomedical Engineering | 2015

Cognitive Workload Assessment Based on the Tensorial Treatment of EEG Estimates of Cross-Frequency Phase Interactions

Stavros I. Dimitriadis; Yu Sun; Kenneth Kwok; Nikolaos A. Laskaris; Nitish V. Thakor; Anastasios Bezerianos

The decoding of conscious experience, based on non-invasive measurements, has become feasible by tailoring machine learning techniques to analyse neuroimaging data. Recently, functional connectivity graphs (FCGs) have entered into the picture. In the related decoding scheme, FCGs are treated as unstructured data and, hence, their inherent format is overlooked. To alleviate this, tensor subspace analysis (TSA) is incorporated for the parsimonious representation of connectivity data. In addition to the particular methodological innovation, this work also makes a contribution at a conceptual level by encoding in FCGs cross-frequency coupling apart from the conventional frequency-specific interactions. Working memory related tasks, supported by networks oscillating at different frequencies, are good candidates for assessing the novel approach. We employed surface EEG recordings when the subjects were repeatedly performing a mental arithmetic task of five cognitive workload levels. For each trial, an FCG was constructed based on phase interactions within and between Frontalθ and Parieto-Occipitalα2 neural activities, which are considered to reflect the function of two distinct working memory subsystems. Based on the TSA representation, a remarkably high correct-recognition-rate (96%) of the task difficulties was achieved using a standard classifier. The overall scheme is computational efficient and therefore potentially useful for real-time and personalized applications.


Brain and Cognition | 2014

Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks

Yu Sun; Julian Lim; Kenneth Kwok; Anastasios Bezerianos

Changes in functional connectivity across mental states can provide richer information about human cognition than simpler univariate approaches. Here, we applied a graph theoretical approach to analyze such changes in the lower alpha (8-10 Hz) band of EEG data from 26 subjects undergoing a mentally-demanding test of sustained attention: the Psychomotor Vigilance Test. Behavior and connectivity maps were compared between the first and last 5 min of the task. Reaction times were significantly slower in the final minutes of the task, showing a clear time-on-task effect. A significant increase was observed in weighted characteristic path length, a measure of the efficiency of information transfer within the cortical network. This increase was correlated with reaction time change. Functional connectivity patterns were also estimated on the cortical surface via source localization of cortical activities in 26 predefined regions of interest. Increased characteristic path length was revealed, providing further support for the presence of a reshaped global topology in cortical connectivity networks under fatigue state. Additional analysis showed an asymmetrical pattern of connectivity (right>left) in fronto-parietal regions associated with sustained attention, supporting the right-lateralization of this function. Interestingly, in the fatigue state, significance decreases were observed in left, but not right fronto-parietal connectivity. Our results indicate that functional network organization can change over relatively short time scales with mental fatigue, and that decreased connectivity has a meaningful relationship with individual difference in behavior and performance.

Collaboration


Dive into the Anastasios Bezerianos's collaboration.

Top Co-Authors

Avatar

Nitish V. Thakor

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yu Sun

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junhua Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumihiko Taya

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge