Anastasios D. Tsaousis
University of Kent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anastasios D. Tsaousis.
Philosophical Transactions of the Royal Society B | 2010
Karin Hjort; Alina V. Goldberg; Anastasios D. Tsaousis; Robert P. Hirt; T. Martin Embley
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Anastasios D. Tsaousis; Sandrine Ollagnier de Choudens; Eleni Gentekaki; Shaojun Long; Daniel Gaston; Alexandra Stechmann; Daniel Vinella; Béatrice Py; Marc Fontecave; Frédéric Barras; Julius Lukeš; Andrew J. Roger
Iron/sulfur cluster (ISC)-containing proteins are essential components of cells. In most eukaryotes, Fe/S clusters are synthesized by the mitochondrial ISC machinery, the cytosolic iron/sulfur assembly system, and, in photosynthetic species, a plastid sulfur-mobilization (SUF) system. Here we show that the anaerobic human protozoan parasite Blastocystis, in addition to possessing ISC and iron/sulfur assembly systems, expresses a fused version of the SufC and SufB proteins of prokaryotes that it has acquired by lateral transfer from an archaeon related to the Methanomicrobiales, an important lineage represented in the human gastrointestinal tract microbiome. Although components of the Blastocystis ISC system function within its anaerobic mitochondrion-related organelles and can functionally replace homologues in Trypanosoma brucei, its SufCB protein has similar biochemical properties to its prokaryotic homologues, functions within the parasite’s cytosol, and is up-regulated under oxygen stress. Blastocystis is unique among eukaryotic pathogens in having adapted to its parasitic lifestyle by acquiring a SUF system from nonpathogenic Archaea to synthesize Fe/S clusters under oxygen stress.
Molecular Microbiology | 2011
Shaojun Long; Piya Changmai; Anastasios D. Tsaousis; Tomáš Skalický; Zdeněk Verner; Yan-Zi Wen; Andrew J. Roger; Julius Lukeš
IscA/Isa proteins function as alternative scaffolds for the assembly of Fe‐S clusters and/or provide iron for their assembly in prokaryotes and eukaryotes. Isa are usually non‐essential and in most organisms are confined to the mitochondrion. We have studied the function of TbIsa1 and TbIsa2 in Trypanosoma brucei, where the requirement for both of them to sustain cell growth depends on the life cycle stage. The TbIsa proteins are abundant in the procyclic form, which contains an active organelle. Both proteins are indispensable for growth, as they are required for the assembly of Fe‐S clusters in mitochondrial aconitase, fumarase and succinate dehydrogenase. Reactive oxygen species but not iron accumulate in the procyclic mitochondrion upon ablation of the TbIsa proteins, but their depletion does not influence the assembly of Fe‐S clusters in cytosolic proteins. In the bloodstream form, which has a downregulated mitochondrion, the TbIsa proteins are non‐essential. The Isa2 orthologue of the anaerobic protist Blastocystis partially rescued the growth and enzymatic activities of TbIsa1/2 knock‐down. Rescues of single knock‐downs as well as heterologous rescues with human Isa orthologues partially recovered the activities of aconitase and fumarase. These results show that the Isa1 and Isa2 proteins of diverse eukaryotes have overlapping functions.
Eukaryotic Cell | 2014
Anastasios D. Tsaousis; Eleni Gentekaki; Laura Eme; Daniel Gaston; Andrew J. Roger
ABSTRACT The cytosolic iron/sulfur cluster assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight proteins in opisthokont lineages, such as animals and fungi. We sought to identify and characterize homologues of the CIA system proteins in the anaerobic stramenopile parasite Blastocystis sp. strain NandII. We identified transcripts encoding six of the components—Cia1, Cia2, MMS19, Nbp35, Nar1, and a putative Tah18—and showed using immunofluorescence microscopy, immunoelectron microscopy, and subcellular fractionation that the last three of them localized to the cytoplasm of the cell. We then used comparative genomic and phylogenetic approaches to investigate the evolutionary history of these proteins. While most Blastocystis homologues branch with their eukaryotic counterparts, the putative Blastocystis Tah18 seems to have a separate evolutionary origin and therefore possibly a different function. Furthermore, our phylogenomic analyses revealed that all eight CIA components described in opisthokonts originated before the diversification of extant eukaryotic lineages and were likely already present in the last eukaryotic common ancestor (LECA). The Nbp35, Nar1 Cia1, and Cia2 proteins have been conserved during the subsequent evolutionary diversification of eukaryotes and are present in virtually all extant lineages, whereas the other CIA proteins have patchy phylogenetic distributions. Cia2 appears to be homologous to SufT, a component of the prokaryotic sulfur utilization factors (SUF) system, making this the first reported evolutionary link between the CIA and any other Fe/S biogenesis pathway. All of our results suggest that the CIA machinery is an ubiquitous biosynthetic pathway in eukaryotes, but its apparent plasticity in composition raises questions regarding how it functions in nonmodel organisms and how it interfaces with various iron/sulfur cluster systems (i.e., the iron/sulfur cluster, nitrogen fixation, and/or SUF system) found in eukaryotic cells.
Methods in Enzymology | 2009
Daniel Gaston; Anastasios D. Tsaousis; Andrew J. Roger
In eukaryotes, determination of the subcellular location of a novel protein encoded in genomic or transcriptomic data provides useful clues as to its possible function. However, experimental localization studies are expensive and time-consuming. As a result, accurate in silico prediction of subcellular localization from sequence data alone is an extremely important field of study in bioinformatics. This is especially so as genomic studies expand beyond model system organisms to encompass the full diversity of eukaryotes. Here we review some of the more commonly used programs for prediction of proteins that function in mitochondria, or mitochondrion-related organelles in diverse eukaryotic lineages and provide recommendations on how to apply these methods. Furthermore, we compare the predictive performance of these programs on a mixed set of mitochondrial and non-mitochondrial proteins. Although N-terminal targeting peptide prediction programs tend to have the highest accuracy, they cannot be effectively used for partial coding sequences derived from high-throughput expressed sequence tag surveys where data for the N-terminus of the encoded protein is often missing. Therefore methods that do not rely on the presence of an N-terminal targeting sequence alone are extremely useful, especially for expressed sequence tag data. The best strategy for classification of unknown proteins is to use multiple programs, incorporating a variety of prediction strategies, and closely examine the predictions with an understanding of how each of those programs will likely handle the data.
PLOS Biology | 2017
Eleni Gentekaki; Bruce A. Curtis; Courtney W. Stairs; Vladimír Klimeš; Marek Eliáš; Dayana E. Salas-Leiva; Emily K. Herman; Laura Eme; Maria Cecilia Arias; Bernard Henrissat; Frédérique Hilliou; Mary J. Klute; Hiroshi Suga; Shehre-Banoo Malik; Arthur W. Pightling; Martin Kolisko; Richard A. Rachubinski; Alexander Schlacht; Darren M. Soanes; Anastasios D. Tsaousis; John M. Archibald; Steven G. Ball; Joel B. Dacks; C. Graham Clark; Mark van der Giezen; Andrew J. Roger
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%–61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Archive | 2012
Anastasios D. Tsaousis; Michelle M. Leger; Courtney W. Stairs; Andrew J. Roger
While many multicellular anaerobes possess mitochondria that resemble those of aerobic eukaryotes, microbial eukaryotes that live exclusively in anoxic and low oxygen environments harbor mitochondrion-related organelles (MROs). Currently, these organelles are broadly classified as either hydrogenosomes (anaerobic ATP-producing organelles that produce molecular hydrogen) or mitosomes (organelles that do not generate ATP); however, ongoing studies of diverse microbial lineages are revealing a wider spectrum of functional types. In adaptation to low oxygen conditions, the MROs of anaerobic eukaryotes have acquired unique characteristics, some of which do not appear to derive from the α-proteobacterium that gave rise to the ancestral mitochondrion. These characteristics include alternative pathways for pyruvate metabolism as well as enzymes such as [FeFe]-hydrogenases that collectively function in anaerobic energy metabolism. In addition to these pathways, the mitochondrial protein import, metabolic exchange, and Fe–S cluster biosynthesis machineries are present in all MROs studied to date; these systems support the protein, solute, and energy requirements of both the organelles and the cells that harbor them. MROs represent a unique class of organelles that have successfully adapted by reduction or alteration of existing pathways as well as by acquisition of novel metabolic machineries that allowed their hosts to thrive in diverse environments without oxygen.
Genome Biology and Evolution | 2014
Anastasios D. Tsaousis; Eva Nývltová; Robert Sutak; Ivan Hrdý; Jan Tachezy
Naegleria gruberi is a free-living heterotrophic aerobic amoeba well known for its ability to transform from an amoeba to a flagellate form. The genome of N. gruberi has been recently published, and in silico predictions demonstrated that Naegleria has the capacity for both aerobic respiration and anaerobic biochemistry to produce molecular hydrogen in its mitochondria. This finding was considered to have fundamental implications on the evolution of mitochondrial metabolism and of the last eukaryotic common ancestor. However, no actual experimental data have been shown to support this hypothesis. For this reason, we have decided to investigate the anaerobic metabolism of the mitochondrion of N. gruberi. Using in vivo biochemical assays, we have demonstrated that N. gruberi has indeed a functional [FeFe]-hydrogenase, an enzyme that is attributed to anaerobic organisms. Surprisingly, in contrast to the published predictions, we have demonstrated that hydrogenase is localized exclusively in the cytosol, while no hydrogenase activity was associated with mitochondria of the organism. In addition, cytosolic localization displayed for HydE, a marker component of hydrogenase maturases. Naegleria gruberi, an obligate aerobic organism and one of the earliest eukaryotes, is producing hydrogen, a function that raises questions on the purpose of this pathway for the lifestyle of the organism and potentially on the evolution of eukaryotes.
International Journal for Parasitology | 2017
Christopher N. Miller; Lyne Jossé; Ian R. Brown; Ben J. F. Blakeman; Jane F. Povey; Lyto Yiangou; Mark Price; Jindrich Cinatl; Wei-Feng Xue; Martin Michaelis; Anastasios D. Tsaousis
Graphical abstract
Molecular Biology of the Cell | 2015
Elizabeth Richardson; Kelly Zerr; Anastasios D. Tsaousis; Richard G. Dorrell; Joel B. Dacks
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.