Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anastassia Stoykova is active.

Publication


Featured researches published by Anastassia Stoykova.


Nature | 2007

Ambra1 regulates autophagy and development of the nervous system

Gian Maria Fimia; Anastassia Stoykova; Alessandra Romagnoli; Luigi Giunta; Sabrina Di Bartolomeo; Roberta Nardacci; Marco Corazzari; Claudia Fuoco; Ahmet Ucar; Peter Schwartz; Peter Gruss; Mauro Piacentini; Kamal Chowdhury; Francesco Cecconi

Autophagy is a self-degradative process involved both in basal turnover of cellular components and in response to nutrient starvation or organelle damage in a wide range of eukaryotes. During autophagy, portions of the cytoplasm are sequestered by double-membraned vesicles called autophagosomes, and are degraded after fusion with lysosomes for subsequent recycling. In vertebrates, this process acts as a pro-survival or pro-death mechanism in different physiological and pathological conditions, such as neurodegeneration and cancer; however, the roles of autophagy during embryonic development are still largely uncharacterized. Beclin1 (Becn1; coiled-coil, myosin-like BCL2-interacting protein) is a principal regulator in autophagosome formation, and its deficiency results in early embryonic lethality. Here we show that Ambra1 (activating molecule in Beclin1-regulated autophagy), a large, previously unknown protein bearing a WD40 domain at its amino terminus, regulates autophagy and has a crucial role in embryogenesis. We found that Ambra1 is a positive regulator of the Becn1-dependent programme of autophagy, as revealed by its overexpression and by RNA interference experiments in vitro. Notably, Ambra1 functional deficiency in mouse embryos leads to severe neural tube defects associated with autophagy impairment, accumulation of ubiquitinated proteins, unbalanced cell proliferation and excessive apoptotic cell death. In addition to identifying a new and essential element regulating the autophagy programme, our results provide in vivo evidence supporting the existence of a complex interplay between autophagy, cell growth and cell death required for neural development in mammals.


The Journal of Neuroscience | 1994

Roles of Pax-genes in developing and adult brain as suggested by expression patterns

Anastassia Stoykova; Peter Gruss

We have examined the transcript distribution of six members of the murine paired box-containing gene family (Pax-gene family) in midgestation embryo and adult brain using in situ hybridization analysis. The expression domains of several Pax-genes in the embryo brain were found to correspond with anatomical boundaries that coincide with neuromere landmarks and therefore respect former neuromere territories in the forebrain. The results are consistent with the concept of brain segmentation and suggest a role for Pax-genes in the brain regionalization. In the adult brain the expression of Pax-genes was observed in discreet areas, with a caudal to rostral restriction in the number of the expressed genes. In general the distribution of transcripts along the anterior-posterior axis was similar to that found in midgestation embryo brain, suggesting a role for Pax-genes in the commitment of the precursor cells to different neuronal cell fates and in the maintenance of specific brain cell subtypes. In the cerebellar cortex, the granular cell layer was found to express high levels of the Pax-6 gene, while putative Bergmann glia and cells surrounding the Purkinje cells contained Pax-3 transcripts. The main adult brain structures that expressed distinct Pax-mRNAs were the periglomerular and granular cell layer of olfactory bulb, nuclei of the septum, amygdala, and isthmus, which suggests a role for the Pax-gene family in the specification of the subcortical domains of the evolutionary old limbic system.


Neuron | 1998

Pax6 Controls Radial Glia Differentiation in the Cerebral Cortex

Magdalena Götz; Anastassia Stoykova; Peter Gruss

Radial glia cells perform a dual function in the developing nervous system as precursor cells and guides for migrating neurons. We show here that during forebrain neurogenesis, the transcription factor Pax6 is specifically localized in radial glia cells of the cortex but not of the basal telencephalon. In Pax6-deficient mice, cortical radial glia cells were altered in their morphology, number, tenascin-C (TN-C) expression, and cell cycle. We show that some of these alterations are cell-autonomous, whereas others were rescued by coculturing with wild-type cortical cells. Our results suggest that Pax6 plays an essential role in the differentiation of cortical radial glia. Thus, despite their widespread distribution, radial glia cells are regionally specified in the developing CNS.


European Journal of Neuroscience | 2006

Comparative aspects of cerebral cortical development.

Zoltán Molnár; Christine Métin; Anastassia Stoykova; Victor Tarabykin; David J. Price; Fiona Francis; Gundela Meyer; Colette Dehay; Henry Kennedy

This review aims to provide examples of how both comparative and genetic analyses contribute to our understanding of the rules for cortical development and evolution. Genetic studies have helped us to realize the evolutionary rules of telencephalic organization in vertebrates. The control of the establishment of conserved telencephalic subdivisions and the formation of boundaries between these subdivisions has been examined and the very specific alterations at the striatocortical junction have been revealed. Comparative studies and genetic analyses both demonstrate the differential origin and migratory pattern of the two basic neuron types of the cerebral cortex. GABAergic interneurons are mostly generated in the subpallium and a common mechanism governs their migration to the dorsal cortex in both mammals and sauropsids. The pyramidal neurons are generated within the cortical germinal zone and migrate radially, the earliest generated cell layers comprising preplate cells. Reelin‐positive Cajal–Retzius cells are a general feature of all vertebrates studied so far; however, there is a considerable amplification of the Reelin signalling with cortical complexity, which might have contributed to the establishment of the basic mammalian pattern of cortical development. Based on numerous recent observations we shall present the argument that specialization of the mitotic compartments may constitute a major drive behind the evolution of the mammalian cortex. Comparative developmental studies have revealed distinct features in the early compartments of the developing macaque brain, drawing our attention to the limitations of some of the current model systems for understanding human developmental abnormalities of the cortex. Comparative and genetic aspects of cortical development both reveal the workings of evolution.


Development | 2004

Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development

Nicole Haubst; Joachim Berger; Venugopal Radjendirane; Jochen Graw; Jack Favor; Grady F. Saunders; Anastassia Stoykova; Magdalena Götz

The transcription factor Pax6 plays a key role during development of various organs, including the brain where it affects cell fate, cell proliferation and patterning. To understand how Pax6 coordinates these diverse effects at the molecular level, we examined the role of distinct DNA-binding domains of Pax6, the homeodomain (HD), the paired domain (PD) and its splice variant (5a), using loss- and gain-of-function approaches. Here we show that the PD is necessary for the regulation of neurogenesis, cell proliferation and patterning effects of Pax6, since these aspects are severely affected in the developing forebrain of the Pax6Aey18 mice with a deletion in the PD but intact homeo- and transactivation domains. In contrast, a mutation of the HD lacking DNA-binding (Pax64Neu) resulted in only subtle defects of forebrain development. We further demonstrate distinct roles of the two splice variants of the PD. Retrovirally mediated overexpression of Pax6 containing exon 5a inhibited cell proliferation without affecting cell fate, while Pax6 containing the canonical form of the PD lacking exon 5a affected simultaneously cell fate and proliferation. These results therefore demonstrate a key role of the PD in brain development and implicate splicing as a pivotal factor regulating the potent neurogenic role of Pax6.


Nature Neuroscience | 2002

Conversion of cerebral cortex into basal ganglia in Emx2-/- Pax6Sey/Sey double-mutant mice

Luca Muzio; Barbara DiBenedetto; Anastassia Stoykova; Edoardo Boncinelli; Peter Gruss; Antonello Mallamaci

The molecular mechanisms that activate morphogenesis of cerebral cortex are currently the subject of intensive experimental analysis. Transcription factor genes of the homeobox, basic helix-loop-helix (bHLH) and zinc-finger families have recently been shown to have essential roles in this process. However, the actual selector genes activating corticogenesis have not yet been identified. Here we show that high-level expression of at least one functional allele of either of the homeobox genes Emx2 or Pax6 in the dorsal telencephalon is necessary and sufficient to stably activate morphogenesis of cerebral cortex and to repress that of adjacent structures, such as striatum.


Development | 2003

Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6

Nicole Bäumer; Till Marquardt; Anastassia Stoykova; Derek Spieler; Dieter Treichel; Ruth Ashery-Padan; Peter Gruss

The transcription factors Pax2 and Pax6 are co-expressed in the entire optic vesicle (OV) prior and concomitant with the establishment of distinct neuroretinal, retinal, pigmented-epithelial and optic-stalk progenitor domains, suggesting redundant functions during retinal determination. Pax2; Pax6 compound mutants display a dose-dependent reduction in the expression of the melanocyte determinant Mitf, accompanied by transdifferentiation of retinal pigmented epithelium (RPE) into neuroretina (NR) in Pax2-/-; Pax6+/- embryos, which strongly resembles the phenotype of Mitf-null mutants. In Pax2-/-; Pax6-/- OVs Mitf fails to be expressed and NR markers occupy the area that usually represents the Mitf+ RPE domain. Furthermore, both, Pax2 and Pax6 bind to and activate a MITF RPE-promoter element in vitro, whereas prolonged expression of Pax6 in the Pax2-positive optic stalk leads to ectopic Mitf expression and RPE differentiation in vivo. Together, these results demonstrate that the redundant activities of Pax2 and Pax6 direct the determination of RPE, potentially by directly controlling the expression of RPE determinants.


European Journal of Neuroscience | 2006

Molecular mechanisms of cortical differentiation.

François Guillemot; Zoltán Molnár; Victor Tarabykin; Anastassia Stoykova

During development, several populations of progenitor cells in the dorsal telencephalon generate a large variety of neurons which acquire distinct morphologies and physiological properties and serve distinct functions in the mammalian cortex. This paper reviews recent work that has identified (i) key molecules involved in the specification and differentiation of cortical neurons, (ii) novel genes which distinguish distinct subsets of cortical progenitors and may be involved in the diversification of cortical neurons present in different cortical layers, and (iii) mechanisms involved in the generation of different projection neuronal subtypes in the well‐studied model of layer 5 of the rodent cortex.


European Journal of Neuroscience | 2006

Gene networks controlling early cerebral cortex arealization

Antonello Mallamaci; Anastassia Stoykova

Early thalamus‐independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [ Rakic, P. (1988)Science, 241, 170–176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area‐specific morphogenetic programs.


The Journal of Neuroscience | 2005

Selective Requirement of Pax6, But Not Emx2, in the Specification and Development of Several Nuclei of the Amygdaloid Complex

Shubha Tole; Ryan Remedios; Bhaskar Saha; Anastassia Stoykova

The amygdaloid complex is a group of nuclei that are thought to originate from multiple sites of the dorsal and ventral telencephalic neuroepithelium. The mechanisms that regulate their development are essentially unknown. We studied the role of Pax6 and Emx2, two transcription factors that regulate regional specification and growth of the telencephalon, in the morphogenesis of the amygdaloid complex. We used a set of specific marker genes that identify distinct amygdaloid nuclei to analyze Pax6/Small eye and Emx2 knock-out mutant mouse brains. We found that there is a selective requirement for Pax6, but not Emx2, in the formation a subset of nuclei within the amygdaloid complex. Specifically, structures that were not previously considered to be developmentally linked, the nucleus of the lateral olfactory tract and the lateral, basolateral, and basomedial nuclei, all appear to have a common requirement for Pax6. Together, our findings provide new insights into the origins and mechanisms underlying the development of the amygdaloid complex.

Collaboration


Dive into the Anastassia Stoykova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linh Pham

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonello Mallamaci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge