Anasuya Chattopadhyay
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anasuya Chattopadhyay.
Journal of Virology | 2013
Anasuya Chattopadhyay; Eryu Wang; Robert L. Seymour; Scott C. Weaver; John K. Rose
ABSTRACT While a large number of mosquito-transmitted alphaviruses are known to cause serious human diseases, there are no licensed vaccines that protect against alphavirus infections. The alphavirus chikungunya virus (CHIKV) has caused multiple recent outbreaks of chikungunya fever. This virus has the potential to cause a worldwide epidemic and has generated strong interest in development of a prophylactic CHIKV vaccine. We report here on the development of a potent experimental vaccine for CHIKV based on a chimeric vesicular stomatitis virus (VSV) expressing the entire CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G). These VSVΔG-CHIKV chimeras incorporated functional CHIKV glycoproteins into the viral envelope in place of VSV G. The chimeric viruses were attenuated for growth in tissue culture but could be propagated to high titers without VSV G complementation. They also generated robust neutralizing antibody and cellular immune responses to CHIKV in mice after a single dose and protected mice against CHIKV infection. VSVΔG-alphavirus chimeras could have general applicability as alphavirus vaccines.
Vaccine | 2008
Anasuya Chattopadhyay; Steven Park; Guillaume Delmas; Rema Suresh; Svetlana Senina; David S. Perlin; John K. Rose
We have developed an experimental recombinant vesicular stomatitis virus (VSV) vectored plague vaccine expressing a secreted form of Yersinia pestis low calcium response protein V (LcrV) from the first position of the VSV genome. This vector, given intramuscularly in a single dose, induced high-level antibody titers to LcrV and gave 90-100% protection against pneumonic plague challenge in mice. This single-dose protection was significantly better than that generated by VSV expressing the non-secreted LcrV protein. Increased protection correlated with increased anti-LcrV antibody and a bias toward IgG2a and away from IgG1 isotypes. We also found that the depletion of CD4+ cells, but not CD8+ cells, at the time of challenge resulted in reduced vaccine protection, indicating a role for cellular immunity in protection.
Antiviral Research | 2014
Michael K. Lo; Brian H. Bird; Anasuya Chattopadhyay; Clifton P. Drew; Brock E. Martin; Joann D. Coleman; John K. Rose; Stuart T. Nichol; Christina F. Spiropoulou
Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans.
Journal of Virology | 2011
Anasuya Chattopadhyay; John K. Rose
ABSTRACT Replication-defective vaccine vectors based on vesicular stomatitis virus (VSV) lacking its envelope glycoprotein gene (G) are highly effective in animal models. However, such ΔG vectors are difficult to grow because they require complementation with the VSV G protein. In addition, the complementing G protein induces neutralizing antibodies in animals and thus limits multiple vector applications. In the process of generating an experimental Nipah virus (a paramyxovirus) vaccine, we generated two defective VSVΔG vectors, each expressing one of the two Nipah virus (NiV) glycoproteins (G and F) that are both required for virus entry to host cells. These replication-defective VSV vectors were effective at generating NiV neutralizing antibody in mice. Most interestingly, we found that these two defective viruses could be grown together and passaged in tissue culture cells in the absence of VSV G complementation. This mixture of complementing defective viruses was also highly effective at generating NiV neutralizing antibody in animals. This novel approach to growing and producing a vaccine from two defective viruses could be generally applicable to vaccine production for other paramyxoviruses or for other viruses where the expression of at least two different proteins is required for viral entry. Such an approach minimizes biosafety concerns that could apply to single, replication-competent VSV recombinants expressing all proteins required for infection.
Journal of Virology | 2013
Aparna Talekar; Ilaria DeVito; Zuhair Salah; Samantha G. Palmer; Anasuya Chattopadhyay; John K. Rose; Rui Xu; Ian A. Wilson; Anne Moscona; Matteo Porotto
ABSTRACT Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Nina F. Rose; Jean Publicover; Anasuya Chattopadhyay; John K. Rose
Self-propagating, infectious, virus-like particles are generated in animal cell lines transfected with a Semliki Forest virus RNA replicon encoding a single viral structural protein, the vesicular stomatitis virus (VSV) glycoprotein. We show here that these infectious particles, which we call propagating replicons, are potent inducers of neutralizing antibody in animals yet are nonpathogenic. Mice vaccinated with a single dose of the particles generated high titers of VSV-neutralizing antibody and were protected from a subsequent lethal challenge with VSV. Induction of antibody required RNA replication. We also report that additional genes (including an HIV-1 envelope protein gene) expressed from the propagating replicons induced strong cellular immune responses to the corresponding proteins after a single inoculation. Our studies reveal the potential of these particles as simple and safe vaccine vectors inducing strong humoral and cellular immune responses.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Nina F. Rose; Linda Buonocore; John B. Schell; Anasuya Chattopadhyay; Kapil Bahl; Xinran Liu; John K. Rose
Significance All known membrane-enveloped RNA viruses have capsid proteins that encase their RNA genomes. This paper shows that infectious, membrane-enveloped, virus-like vesicles with RNA genomes can evolve in vitro to grow to high titers without a capsid protein. The infectious vesicles are apparently generated from RNA replication factories called spherules that bud from the cell surface. They evolve in vitro to bud with high efficiency through the acquisition of multiple mutations in the non-structural replicase proteins. One mutation generates a critical motif found in many viral structural proteins. This motif is involved in recruiting cellular machinery to drive efficient budding. Prior to the evolution of capsid proteins, primitive RNA viruses may have used this budding mechanism. Self-propagating, infectious, virus-like vesicles (VLVs) are generated when an alphavirus RNA replicon expresses the vesicular stomatitis virus glycoprotein (VSV G) as the only structural protein. The mechanism that generates these VLVs lacking a capsid protein has remained a mystery for over 20 years. We present evidence that VLVs arise from membrane-enveloped RNA replication factories (spherules) containing VSV G protein that are largely trapped on the cell surface. After extensive passaging, VLVs evolve to grow to high titers through acquisition of multiple point mutations in their nonstructural replicase proteins. We reconstituted these mutations into a plasmid-based system from which high-titer VLVs can be recovered. One of these mutations generates a late domain motif (PTAP) that is critical for high-titer VLV production. We propose a model in which the VLVs have evolved in vitro to exploit a cellular budding pathway that is hijacked by many enveloped viruses, allowing them to bud efficiently from the cell surface. Our results suggest a basic mechanism of propagation that may have been used by primitive RNA viruses lacking capsid proteins. Capsids may have evolved later to allow more efficient packaging of RNA, greater virus stability, and evasion of innate immunity.
Journal of Virology | 2017
Anthony N. van den Pol; Guochao Mao; Anasuya Chattopadhyay; John K. Rose; John N. Davis; Douglas S. Lyles
ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism.
Vaccine | 2018
Anasuya Chattopadhyay; Patricia V. Aguilar; Nathen E. Bopp; Timur O. Yarovinsky; Scott C. Weaver; John K. Rose
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.
Human Vaccines & Immunotherapeutics | 2016
Flávio Lauretti; Anasuya Chattopadhyay; Rafael F. O. França; Luiza Antunes de Castro-Jorge; John K. Rose; Benedito Antônio Lopes da Fonseca
ABSTRACT Dengue is the most important arbovirus disease throughout the world and it is responsible for more than 500,000 dengue hemorrhagic cases and 22,000 deaths every year. One vaccine was recently licensed for human use in Brazil, Mexico and Philippines and although at least seven candidates have been in clinical trials the results of the most developed CYD vaccine have demonstrated immunization problems, such as uneven protection and interference between serotypes. We constructed a vaccine candidate based on vesicular stomatitis virus (VSV) expression of pre-membrane (prM) and envelope (E) proteins of dengue-2 virus (DENV-2) and tested it in mice to evaluate immunogenicity and protection against DENV-2 infection. VSV has been successfully used as vaccine vectors for several viruses to induce strong humoral and cellular immune responses. The VSV-DENV-2 recombinant was constructed by inserting the DENV-2 structural proteins into a VSV plasmid DNA for recombinant VSV-DENV-2 recovery. Infectious recombinant VSV viruses were plaque purified and prM and E expression were confirmed by immunofluorescence and radiolabeling of proteins of infected cells. Forty Balb/C mice were inoculated through subcutaneous (s.c.) route with VSV-DENV-2 vaccine in a two doses schedule 15 d apart and 29 d after first inoculation, sera were collected and the mice were challenged with 50 lethal doses (LD50) of a neurovirulent DENV-2. The VSV-DENV-2 induced anti-DENV-2 antibodies and protected animals in the challenge experiment comparable to DENV-2 immunization control group. We conclude that VSV is a promising platform to test as a DENV vaccine and perhaps against others Flaviviridae.