Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anat Eldar-Boock is active.

Publication


Featured researches published by Anat Eldar-Boock.


Journal of Controlled Release | 2012

Administration, distribution, metabolism and elimination of polymer therapeutics.

Ela Markovsky; Hemda Baabur-Cohen; Anat Eldar-Boock; Liora Omer; Galia Tiram; Shiran Ferber; Paula Ofek; Dina Polyak; Ronit Satchi-Fainaro

Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.


Biomaterials | 2011

Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel

Anat Eldar-Boock; Keren Miller; Joaquin Sanchis; Ruth Lupu; María J. Vicent; Ronit Satchi-Fainaro

Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)(2)] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the α(v)β(3) integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)(2)] inhibited the growth of proliferating α(v)β(3)-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)(2)] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced anti-tumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice.


Current Opinion in Biotechnology | 2013

Nano-sized polymers and liposomes designed to deliver combination therapy for cancer.

Anat Eldar-Boock; Dina Polyak; Ronit Satchi-Fainaro

The standard of care for cancer patients comprises more than one therapeutic agent. Treatment is complex since several drugs, administered by different routes, need to be coordinated, taking into consideration their side effects and mechanisms of resistance. Drug delivery systems (DDS), such as polymers and liposomes, are designed to improve the pharmacokinetics and efficacy of bioactive agents (drugs, proteins or oligonucleotides), while reducing systemic toxicity. Using DDS for co-delivery of several agents holds great potential since it targets simultaneously synergistic therapeutic agents increasing their selective accumulation at the tumor site and enhancing their activity allowing administration of lower doses of each agent, thus reducing their side effects. Taken together, implementation of smart DDS will hopefully result in increased patients compliance and better outcome. This review will focus on the latest developments of combination therapy for cancer using DDS.


Molecular Pharmaceutics | 2011

Antiangiogenic Antitumor Activity of HPMA Copolymer–Paclitaxel–Alendronate Conjugate on Breast Cancer Bone Metastasis Mouse Model

Keren Miller; Anat Eldar-Boock; Dina Polyak; Ehud Segal; Liat Benayoun; Yuval Shaked; Ronit Satchi-Fainaro

Polymer therapeutics have shown promise as tumor-targeted drug delivery systems in mice. The multivalency of polymers allows the attachment of different functional agents to a polymeric backbone, including chemotherapeutic and antiangiogenic drugs, as well as targeting moieties, such as the bone-targeting agent alendronate (ALN). We previously reported the conjugation of ALN and the chemotherapeutic drug paclitaxel (PTX) with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. The in vitro physicochemical properties, cancer cytotoxicity and antiangiogenic activity of HPMA copolymer-PTX-ALN conjugate were extensively characterized. The reported results warranted in vivo evaluations of the conjugate. In this manuscript, we evaluated the in vivo anticancer and antiangiogenic activity of HPMA copolymer-PTX-ALN conjugate. The conjugate exhibited an antiangiogenic effect by decreasing microvessel density (MVD), and inducing apoptotic circulating endothelial cells (CEC) following treatment of the mice. Using intravital imaging system and mCherry-labeled breast cancer cell lines, we were able to monitor noninvasively the progression of orthotopic metastatic tumors injected into the tibia of the mice. HPMA copolymer-PTX-ALN conjugate showed the greatest antitumor efficacy on mCherry-labeled 4T1 mammary adenocarcinoma inoculated into the tibia, as compared with PTX alone or in combination with ALN. Treatment with the bone-targeted polymeric conjugate demonstrated improved efficacy, was better tolerated, and was more easily administered intravenously than the clinically used PTX formulated in Cremophor/ethanol.


Angewandte Chemie | 2012

6′′-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes†

Ido M. Herzog; Keith D. Green; Yifat Berkov-Zrihen; Mark Feldman; Roee R. Vidavski; Anat Eldar-Boock; Ronit Satchi-Fainaro; Avigdor Eldar; Sylvie Garneau-Tsodikova; Micha Fridman

Decades of widespread clinical use of the bacterial ribosome A-site targeting aminoglycosides (AGs) enhanced the evolution of resistance to these antibiotics and reduced their clinical efficacy.[1] Three modes of action lead to bacterial resistance to AGs: reduction in the intracellular concentration of the antibiotics by efflux pump proteins or through reduced membrane permeability; structural modifications of the 16S ribosomal RNA leading to reduced target affinity; and deactivation by AG-modifying enzymes (AMEs).[1c, 2] AMEs are divided into three families: AG nucleotidyltransferases (ANTs), AG phosphotransferases (APHs), and AG acetyltransferases (AACs).[1b, 3]


Journal of Controlled Release | 2015

A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index.

Stefano Salmaso; Anat Eldar-Boock; Dikla Ben-Shushan; Shiran Ferber; Galia Tiram; Hilary Shmeeda; Natalie Landa-Rouben; Jonathan Leor; Paolo Caliceti; Alberto Gabizon; Ronit Satchi-Fainaro

Ligand-receptor mediated targeting may affect differently the performance of supramolecular drug carriers depending on the nature of the nanocarrier. In this study, we compare the selectivity, safety and activity of doxorubicin (Dox) entrapped in liposomes versus Dox conjugated to polymeric nanocarriers in the presence or absence of a folic acid (FA)-targeting ligand to cancer cells that overexpress the folate receptor (FR). Two pullulan (Pull)-based conjugates of Dox were synthesized, (FA-PEG)-Pull-(Cyst-Dox) and (NH2-PEG)-Pull-(Cyst-Dox). The other delivery systems are Dox loaded PEGylated liposomes (PLD, Doxil®) and the FR-targeted version (PLD-FA) obtained by ligand post-insertion into the commercial formulation. Both receptor-targeted drug delivery systems (DDS) were shown to interact in vitro specifically with cells via the folate ligand. Treatment of FR-overexpressing human cervical carcinoma KB tumor-bearing mice with three-weekly injections resulted in slightly enhanced anticancer activity of PLD-FA compared to PLD and no activity for both pullulan-based conjugates. When the DDS were administered intravenously every other day, the folated-Pull conjugate and the non-folated-Pull conjugate displayed similar and low antitumor activity as free Dox. At this dosing regimen, the liposome-based formulations displayed enhanced antitumor activity with an advantage to the non-folated liposome. However, both liposomal formulations suffered from toxicity that was reversible following treatment discontinuation. Using a daily dosing schedule, with higher cumulative dose, the folated-Pull conjugate strongly inhibited tumor growth while free Dox was toxic at this regimen. For polymeric constructs, increasing dose intensity and cumulative dose strongly affects the therapeutic index and reveals a major therapeutic advantage for the FR-targeted formulation. All DDS were able to abrogate doxorubicin-induced cardiotoxicity. This study constitutes the first side-by-side comparison of two receptor-targeted ligand-bearing systems, polymer therapeutics versus nanoparticulate systems, evaluated in the same mouse tumor model at several dosing regimens.


MedChemComm | 2013

Design of membrane targeting tobramycin-based cationic amphiphiles with reduced hemolytic activity

Ido M. Herzog; Mark Feldman; Anat Eldar-Boock; Ronit Satchi-Fainaro; Micha Fridman

Tobramycin-based cationic amphiphiles differing in the chemical bond linking their hydrophobic and hydrophilic parts were synthesized and biologically evaluated. Several compounds demonstrated potent antimicrobial activities compared to the parent drug. One analogue exhibited a significant reduction in red blood cells hemolysis, demonstrating that it is possible to maintain the antimicrobial potency of these molecules while reducing their undesired hemolytic effect through chemical modifications.


Bioconjugate Chemistry | 2015

Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment

Gweńael̈le Bonzi; Stefano Salmaso; Anat Eldar-Boock; Ronit Satchi-Fainaro; Paolo Caliceti

A novel polysaccharide bioconjugate was designed to selectively target breast cancer bone metastases using a bisphosphonate moiety (alendronate, ALN). Paclitaxel (PTX) was first covalently conjugated to pullulan (Pull) through a Cathepsin K-sensitive tetrapeptide spacer followed by a self-immolative aminobenzyl alcohol spacer to obtain Pull-(GGPNle-φ-PTX). ALN was then conjugated to the polymeric backbone of Pull-(GGPNle-φ-PTX) via a PEG spacer. The final bioconjugate Pull-(GGPNle-φ-PTX)-(PEG-ALN) was found to assemble into colloidal spherical structures, which were physically and chemically stable under physiological conditions. In vitro studies showed that Pull-(GGPNle-φ-PTX)-(PEG-ALN) had strong affinity for hydroxyapatite, which simulates the bone tissue. Paclitaxel was rapidly released from the bioconjugate by Cathepsin K cleavage under pathological conditions. All studies performed using human MDA-MB-231-BM (bone metastases-originated clone), murine 4T1 breast cancer cells, murine K7M2, and human SAOS-2 osteosarcoma cells showed that the bioconjugate exerted an enhanced antiproliferative activity compared to the conjugate without the ALN. Furthermore, the nanoconjugate inhibited the migration of cancer cells and further displayed potent anti-angiogenic activity. In conclusion, the results showed that this conjugate has an excellent potential for selective treatment of bone neoplasms such as breast cancer bone metastases and osteosarcoma.


Molecular Human Reproduction | 2013

Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells

Dana Chuderland; Ido Ben-Ami; Ruth Kaplan-Kraicer; Hadas Grossman; Alisa Komsky; Ronit Satchi-Fainaro; Anat Eldar-Boock; Raphael Ron-El; Ruth Shalgi

Angiogenesis is critical for the development of ovarian follicles. Blood vessels are abrogated from the follicle until ovulation, when they invade it to support the developing corpus luteum. Granulosa cells are known to secrete anti-angiogenic factors that shield against premature vascularization; however, their molecular identity is yet to be defined. In this study we address the physiological role of pigment epithelium-derived factor (PEDF), a well-known angiogenic inhibitor, in granulosa cells. We have shown that human and mouse primary granulosa cells express and secrete PEDF, and characterized its hormonal regulation. Stimulation of granulosa cells with increasing doses of estrogen caused a gradual decrease in the PEDF secretion, while stimulation with progesterone caused an abrupt decrease in its secretion. Moreover, We have shown, by time- and dose-response experiments, that the secreted PEDF and vascular endothelial growth factor (VEGF) were inversely regulated by hCG; namely, PEDF level was nearly undetectable under high doses of hCG, while VEGF level was significantly elevated. The anti-angiogenic nature of the PEDF secreted from granulosa cells was examined by migration, proliferation and tube formation assays in cultures of human umbilical vein endothelial cells. Depleting PEDF from primary granulosa cells conditioned media accelerated endothelial cells proliferation, migration and tube formation. Collectively, the dynamic expression of PEDF that inversely portrays VEGF expression may imply its putative role as a physiological negative regulator of follicular angiogenesis.


Journal of Controlled Release | 2017

In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio

Hemda Baabur-Cohen; Laura Isabel Vossen; Harald Rune Krüger; Anat Eldar-Boock; Eilam Yeini; Natalie Landa-Rouben; Galia Tiram; Stefanie Wedepohl; Ela Markovsky; Jonathan Leor; Marcelo Calderón; Ronit Satchi-Fainaro

ABSTRACT Nowadays, combination therapy became a standard in oncology. In this study, we compare the activity of two polymeric carriers bearing a combination of the anticancer drugs paclitaxel (PTX) and doxorubicin (DOX), which differ mainly in their architecture and supramolecular assembly. Drugs were covalently bound to a linear polymer, polyglutamic acid (PGA) or to a dendritic scaffold, polyglycerol (PG) decorated with poly(ethylene glycol) (PEG), forming PGA‐PTX‐DOX and PG‐PTX‐bz‐DOX‐PEG, respectively. We explored the relationship between the polymeric architectures and their performance with the aim to augment the pharmacological benefits of releasing both drugs simultaneously at the tumor site at a synergistic ratio. We recently designed and characterized a PGA‐PTX‐DOX conjugate. Here, we describe the synthesis and characterization of PG dendritic scaffold bearing the combination of PTX and DOX. The performance of both conjugates was evaluated in a murine model of mammary adenocarcinoma in immunocompetent mice, to investigate whether the activity of the treatments is affected by the immune system. Drug conjugation to a nano‐sized polymer enabled preferred tumor accumulation by extravasation‐dependent targeting, making use of the enhanced permeability and retention (EPR) effect. Both PGA‐PTX‐DOX and PG‐PTX‐bz‐DOX‐PEG nano‐sized conjugates exhibited superior anti‐tumor efficacy and safety compared to the combination of the free drugs, at equivalent concentrations. However, while PGA‐PTX‐DOX was more efficient than a mixture of each drug conjugated to a separate PGA chain, as was previously shown, PG‐PTX‐bz‐DOX‐PEG had similar activity to the mixture of the PG‐PTX‐bz‐PEG and PG‐DOX‐PEG conjugates. Our results show that both conjugates are potential candidates as precision combination nanomedicines for the treatment of breast cancer.

Collaboration


Dive into the Anat Eldar-Boock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge