Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anatoli V. Melechko is active.

Publication


Featured researches published by Anatoli V. Melechko.


Journal of Applied Physics | 2005

Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly

Anatoli V. Melechko; Vladimir I. Merkulov; Timothy E. McKnight; M. A. Guillorn; Kate L Klein; Douglas H. Lowndes; Michael L. Simpson

The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catal...


Applied Physics Letters | 2001

Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition

Vladimir I. Merkulov; Anatoli V. Melechko; Michael A. Guillorn; Douglas H. Lowndes; Michael L. Simpson

We report experimental evidence showing a direct correlation between the alignment of carbon nanofibers (CNFs) prepared by plasma-enhanced chemical-vapor deposition and the location of the catalyst particle during CNF growth. In particular, we find that CNFs that have a catalyst particle at the tip (i.e., growth proceeds from the tip) align along the electric-field lines, whereas CNFs with the particle at the base (i.e., growth proceeds from the base) grow in random orientations. We propose a model that explains the alignment process as a result of a feedback mechanism associated with a nonuniform stress (part tensile, part compressive) that is created across the interface of the catalyst particle with the CNF due to electrostatic forces. Furthermore, we propose that the alignment seen recently in some dense CNF films is due to a crowding effect and is not directly the result of electrostatic forces.


Nanotechnology | 2003

Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation

Timothy E. McKnight; Anatoli V. Melechko; Guy D. Griffin; Michael A. Guillorn; Vladimir I. Merkulov; Francisco Serna; Dale K. Hensley; Mitchel J. Doktycz; Douglas H. Lowndes; Michael L. Simpson

We demonstrate the integration of vertically aligned carbon nanofibre (VACNF) elements with the intracellular domains of viable cells for controlled biochemical manipulation. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (}22


Journal of Applied Physics | 2002

Individually addressable vertically aligned carbon nanofiber-based electrochemical probes

Michael A. Guillorn; Timothy E. McKnight; Anatoli V. Melechko; Vladimir I. Merkulov; Phillip F. Britt; Derek W. Austin; Douglas H. Lowndes; Michael L. Simpson

>> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibres and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofibre was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in vivo diagnostics, and in vivo logic devices.


Applied Physics Letters | 2002

Controlled alignment of carbon nanofibers in a large-scale synthesis process

Vladimir I. Merkulov; Anatoli V. Melechko; Michael A. Guillorn; Michael L. Simpson; Douglas H. Lowndes; J. H. Whealton; R. J. Raridon

In this paper we present the fabrication and initial testing results of high aspect ratio vertically aligned carbon nanofiber (VACNF)-based electrochemical probes. Electron beam lithography was used to define the catalytic growth sites of the VACNFs. Following catalyst deposition, VACNF were grown using a plasma enhanced chemical vapor deposition process. Photolithography was performed to realize interconnect structures. These probes were passivated with a thin layer of SiO2, which was then removed from the tips of the VACNF, rendering them electrochemically active. We have investigated the functionality of completed devices using cyclic voltammetry (CV) of ruthenium hexammine trichloride, a highly reversible, outer sphere redox system. The faradaic current obtained during CV potential sweeps shows clear oxidation and reduction peaks at magnitudes that correspond well with the geometry of these nanoscale electrochemical probes. Due to the size and the site-specific directed synthesis of the VACNFs, these ...


Applied Physics Letters | 2001

Operation of a gated field emitter using an individual carbon nanofiber cathode

Michael A. Guillorn; Anatoli V. Melechko; Vladimir I. Merkulov; E. D. Ellis; C.L. Britton; Michael L. Simpson; Douglas H. Lowndes; L. R. Baylor

Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.


Journal of Applied Physics | 2008

Surface characterization and functionalization of carbon nanofibers

Kate L Klein; Anatoli V. Melechko; Timothy E. McKnight; Scott T. Retterer; Philip D. Rack; Jason D. Fowlkes; David C. Joy; Michael L. Simpson

We report on the operation of an integrated gated cathode device using a single vertically aligned carbon nanofiber as the field emission element. This device is capable of operation in a moderate vacuum for extended periods of time without experiencing a degradation of performance. Less than 1% of the total emitted current is collected by the gate electrode, indicating that the emitted electron beam is highly collimated. As a consequence, this device is ideal for applications that require well-focused electron emission from a microscale structure.


Journal of Applied Physics | 2002

Field emission from isolated individual vertically aligned carbon nanocones

L. R. Baylor; Vladimir I. Merkulov; E. D. Ellis; Michael A. Guillorn; Douglas H. Lowndes; Anatoli V. Melechko; Michael L. Simpson; J. H. Whealton

Carbon nanofibers are high-aspect ratio graphitic materials that have been investigated for numerous applications due to their unique physical properties such as high strength, low density, metallic conductivity, tunable morphology, chemical and environmental stabilities, as well as compatibility with organochemical modification. Surface studies are extremely important for nanomaterials because not only is the surface structurally and chemically quite different from the bulk, but its properties tend to dominate at the nanoscale due to the drastically increased surface-to-volume ratio. This review surveys recent developments in surface analysis techniques used to characterize the surface structure and chemistry of carbon nanofibers and related carbon materials. These techniques include scanning probe microscopy, infrared and electron spectroscopies, electron microscopy, ion spectrometry, temperature-programed desorption, and atom probe analysis. In addition, this article evaluates the methods used to modif...


Applied Physics Letters | 2002

Self-Aligned Gated Field Emission Devices Using Single Carbon Nanofiber Cathodes

Michael A. Guillorn; Anatoli V. Melechko; Vladimir I. Merkulov; Dale K. Hensley; Michael L. Simpson; Douglas H. Lowndes

Field emission from isolated individual vertically aligned carbon nanocones (VACNCs) has been measured using a small-diameter moveable probe. The probe was scanned parallel to the sample plane to locate the VACNCs, and perpendicular to the sample plane to measure the emission turn-on electric field of each VACNC. Individual VACNCs can be good field emitters. The emission threshold field depends on the geometric aspect ratio (height/tip radius) of the VACNC and is lowest when a sharp tip is present. VACNCs exposed to a reactive ion etch process demonstrate a lowered emission threshold field while maintaining a similar aspect ratio. Individual VACNCs can have low emission thresholds, carry high current densities, and have long emission lifetime. This makes them very promising for various field emission applications for which deterministic placement of the emitter with submicron accuracy is needed.


Distributed and Parallel Databases | 2002

RACHET: An Efficient Cover-Based Merging of Clustering Hierarchies from Distributed Datasets

Nagiza F. Samatova; George Ostrouchov; Al Geist; Anatoli V. Melechko

We report on the fabrication and operation of integrated gated field emission devices using single vertically aligned carbon nanofiber (VACNF) cathodes where the gate aperture has been formed using a self-aligned technique based on chemical mechanical polishing. We find that this method for producing gated cathode devices easily achieves structures with gate apertures on the order of 2 μm that show good concentric alignment to the VACNF emitter. The operation of these devices was explored and field emission characteristics that fit well to the Fowler–Nordheim model of emission was demonstrated.

Collaboration


Dive into the Anatoli V. Melechko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy E. McKnight

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vladimir I. Merkulov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas H. Lowndes

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael A. Guillorn

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dale K. Hensley

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kate L Klein

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Mitchel J. Doktycz

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge