Anatoliy V. Popov
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anatoliy V. Popov.
Molecular Imaging | 2008
Jerry D. Glickson; Sissel Lund-Katz; Rong Zhou; Hoon Choi; I-Wei Chen; Hui Li; Ian R. Corbin; Anatoliy V. Popov; Weiguo Cao; Liping Song; Chenze Qi; Diane Marotta; David Nelson; Juan Chen; Britton Chance; Gang Zheng
Low-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI) contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs). Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL]) to over a micron (chylomicrons) is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains), surface loading (intercalation into the phospholipid monolayer), and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core). Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (≤ 400/LDL) have been attached by core loading. Protein loading was used to reroute the LDL from its natural receptor (LDLR) to folate receptors and could be used to target other receptors. A semisynthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles with carboxylated cholesterol and overlaying a monolayer of phospholipid to which apolipoprotein A1 or E was adsorbed for targeting HDL or adsorbing synthetic amphipathic helical peptides ltargeting LDL or folate receptors. These particles can be used for in situ loading of magnetite into cells for MRI-monitored cell tracking or gene expression.
Polymer Chemistry | 2013
Carlos M. R. Abreu; Arménio C. Serra; Anatoliy V. Popov; Krzysztof Matyjaszewski; Tamaz Guliashvili; Jorge F. J. Coelho
The new generation of catalytic systems for Controlled/“Living” Radical Polymerization (CLRP) of vinyl monomers should be non-toxic, inexpensive and provide fast polymerizations in environmentally friendly media. Herein, we report the successful ambient temperature ATRP of several vinyl monomers (MA, n-BA, MMA and DMAEMA) catalyzed by inorganic sulfites (Na2S2O4 and Na2S2O5) and small amounts of a Cu(II)Br2/Me6TREN system in alcohol–water mixtures. The controlled character of ATRP of acrylates and methacrylates was confirmed by the linear increase of molecular weights with monomer conversion, narrow molecular weight distributions (Mw/Mn ∼ 1.05) and by reinitiation experiments (copolymerization and chain extension). 1H NMR and MALDI-TOF analyses confirmed the molecular structure and chain-end functionality of the obtained polymers. ATRP of MA using this novel catalytic system in alcohol–water mixtures with multifunctional Br-based initiators provides 4 and 6 arm star polyacrylates in a controlled manner without any observable gel formation. The data presented open up the possibility of using fast ATRP catalyzed by inorganic sulfites (approved by FDA as food and beverage additives) in solvents that are inexpensive, eco-friendly and widely used in chemical industrial processes.
Bioconjugate Chemistry | 2011
Theresa M. Mawn; Anatoliy V. Popov; Nancy J. Beardsley; Klara Stefflova; Matthew Milkevitch; Gang Zheng; E. James Delikatny
In this article, the characterization of the first near-infrared (NIR) phospholipase-activated molecular beacon is reported, and its utility for in vivo cancer imaging is demonstrated. The probe consists of three elements: a phospholipid (PL) backbone to which the NIR fluorophore, pyropheophorbide a (Pyro), and the NIR Black Hole Quencher 3 (BHQ) were conjugated. Because of the close proximity of BHQ to Pyro, the Pyro-PtdEtn-BHQ probe is self-quenched until enzyme hydrolysis releases the fluorophore. The Pyro-PtdEtn-BHQ probe is highly specific to one isoform of phospholipase C, phosphatidylcholine-specific phospholipase C (PC-PLC), responsible for catabolizing phosphatidylcholine directly to phosphocholine. Incubation of Pyro-PtdEtn-BHQ in vitro with PC-PLC demonstrated a 150-fold increase in fluorescence that could be inhibited by the specific PC-PLC inhibitor tricyclodecan-9-yl xanthogenate (D609) with an IC(50) of 34 ± 8 μM. Since elevations in phosphocholine have been consistently observed by magnetic resonance spectroscopy in a wide array of cancer cells and solid tumors, we assessed the utility of Pyro-PtdEtn-BHQ as a probe for targeted tumor imaging. Injection of Pyro-PtdEtn-BHQ into mice bearing DU145 human prostate tumor xenografts followed by in vivo NIR imaging resulted in a 4-fold increase in tumor radiance over background and a 2 fold increase in the tumor/muscle ratio. Tumor fluorescence enhancement was inhibited with the administration of D609. The ability to image PC-PLC activity in vivo provides a unique and sensitive method of monitoring one of the critical phospholipase signaling pathways activated in cancer, as well as the phospholipase activities that are altered in response to cancer treatment.
Advances in Experimental Medicine and Biology | 2009
Jerry D. Glickson; Sissel Lund-Katz; Rong Zhou; Hoon Choi; I-Wei Chen; Hui Li; Ian R. Corbin; Anatoliy V. Popov; Weiguo Cao; Liping Song; Chenze Qi; Diane Marotta; David Nelson; Juan Chen; Britton Chance; Gang Zheng
Low-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of optical and MRI contrast agents, photodynamic therapy agents and chemotherapeutic agents to normal and neoplastic cells that over express LDL receptors (LDLR). Extension to other lipoproteins ranging in diameter from approximately 5-10 nm (high density lipoprotein, HDL) to over a micron (chilomicrons) is feasible. Loading of contrast or therapeutic agents has been achieved by covalent attachment to protein side chains, intercalation into the phospholipid monolayer and extraction and reconstitution of the triglyceride/cholesterol ester core. Covalent attachment of folate to the lysine side chain amino groups was used to reroute the LDL from its natural receptor (LDLR) to folate receptors and could be utilized to target other receptors. A semi-synthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles (MIONs) with carboxylated cholesterol and overlaying a monolayer ofphospholipid to which Apo A1, Apo E or synthetic amphoteric alpha-helical polypeptides were adsorbed for targeting HDL, LDL or folate receptors, respectively. These particles can be utilized for in situ loading of magnetite into cells for MRI monitored cell tracking or gene therapy.
Polymer Chemistry | 2014
Joana R. Góis; Dominik Konkolewic; Anatoliy V. Popov; Tamaz Guliashvili; Krzysztof Matyjaszewski; Arménio C. Serra; Jorge F. J. Coelho
The kinetics and detailed mechanism of SARA ATRP of 2-(diisopropylamino)ethyl methacrylate (DPA) were investigated. Supplemental activator and reducing agent (SARA) atom transfer radical polymerization (ATRP) using sodium dithionite (Na2S2O4) was used to create well controlled polymers of PDPA. The influence of the initiator, solvent, structure and concentration of the catalyst was studied, and the ratios of Na2S2O4 were adjusted to optimize the polymerization. Well controlled polymers required Na2S2O4 to be slowly and continuously fed to the reaction mixture, with 500 parts per million (ppm) of CuBr2 with tris(2-dimethyamino)amine (Me6TREN) as a ligand. The initial content of Na2S2O4 in the reaction mixture, the feeding rate and the Cu catalyst concentration were optimized to provide polymers with narrow molecular weight distribution (Mw/Mn < 1.15) at high monomer conversion (∼90%). Interestingly, the results revealed that when tris(2-pyridylmethyl)-amine (TPMA) was used as a ligand, the amount of copper required to achieve similar control of the polymerization could be decreased 5 times. This system was successfully extended to the polymerization of oligo(ethylene oxide) methyl ether methacrylate (OEOMA). The high conversion and preservation of the chain-end functionality allows the direct synthesis of POEOMA-b-PDPA block copolymers. The low catalyst concentrations and benign nature of Na2S2O4 make this SARA ATRP method attractive for the synthesis of well controlled water soluble polymers for biomedical applications.
Bioconjugate Chemistry | 2010
Anatoliy V. Popov; Theresa M. Mawn; Soungkyoo Kim; Gang Zheng; E. James Delikatny
The primary focus of this work was to develop activatable probes suitable for in vivo detection of phospholipase activity. Phospholipases (PLs) are ubiquitous enzymes that perform a number of critical regulatory functions. They catalyze phospholipid breakdown and are categorized as A(1), A(2) (PLA(2)), C (PLC), and D (PLD) based on their site of action. Here, we report the design, synthesis, and characterization of self-quenching reporter probes that release fluorescent moieties upon cleavage with PLA(2) or PLC. A series of phospholipids were synthesized bearing the NIR fluorophore pyropheophorbide a (Pyro) at the sn-2 position. Fluorescence quenching was achieved by attachment of either a positively charged black hole quencher-3 (BHQ-3) to the phospholipid headgroup or another neutral Pyro moiety at the sn-1 position. The specificity to different phospholipases was modulated by insertion of spacers (C(6), C(12)) between Pyro and the lipid backbone. The specificity of the quenched fluorescent phospholipids was assayed on a plate reader against a number of phospholipases and compared with two commercial probes bearing the visible fluorophore BODIPY. While PyroC(6)-PyroC(6)-PtdCho revealed significant background fluorescence, and a 10% fluorescence increase under the action of PLA(2), Pyro-PtdEtn-BHQ demonstrated high selective sensitivity to PLC, particularly to the PC-PLC isoform, and its sensitivity to PLA(2) was negligible due to steric hindrance at the sn-2 position. In contrast, the C(12)-spacered PyroC(12)-PtdEtn-BHQ demonstrated a remarkable selectivity for PLA(2) and the best relative PLA(2)/PLC sensitivity, significantly outperforming previously known probes. These results open an avenue for future in vivo experiments and for new probes to detect PL activity.
Polymer Chemistry | 2014
Patrícia V. Mendonça; Dominik Konkolewicz; Saadyah Averick; Arménio C. Serra; Anatoliy V. Popov; Tamaz Guliashvili; Krzysztof Matyjaszewski; Jorge F. J. Coelho
Supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of the cationic monomer (3-acrylamidopropyl)trimethylammonium chloride (AMPTMA) was successfully performed for the first time. The polymerizations were performed in water or ethanol–water mixtures at room temperature in the presence of Cu(0), using relatively low concentrations of soluble copper catalyst and an excess of ligand (Me6TREN). The reaction conditions were optimized to give the best control over the polymerization under environmentally friendly conditions. The polymerization data showed good control over the molecular weights with narrow molecular weight distributions for the entire polymerization. The preservation of the chain-end functionality was confirmed by self-chain extension and the synthesis of a block copolymer containing AMPTMA and oligo(ethylene oxide) methyl ether acrylate (OEOA). SARA ATRP was also extended to the synthesis of alkyne-terminated poly-AMPTMA (PAMPTMA), which was subsequently functionalized, using copper(I) catalyzed azide–alkyne cycloaddition, with an azido-functionalized coumarin derivative.
Polymer Chemistry | 2014
Joana R. Góis; Nuno Rocha; Anatoliy V. Popov; Tamaz Guliashvili; Krzysztof Matyjaszewski; Arménio C. Serra; Jorge F. J. Coelho
2-(Diisopropylamino)ethyl methacrylate (DPA) was polymerized by Atom Transfer Radical Polymerization (ATRP) using sodium dithionite (Na2S2O4) as a reducing agent and supplemental activator with a Cu(II)Br2/Me6TREN catalytic system at 40 °C in an isopropanol–water mixture. The effects of the solvent mixture and the initiator structure on the polymerization kinetics were studied. The eco-friendly catalytic system described is suitable for the synthesis of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) with controlled molecular weight, low dispersity, and well-defined chain-end functionality. Both linear and 4-arm star polymers with various target molecular weights were synthesised. The 1H NMR and MALDI-TOF analyses confirmed the molecular structure and high chain-end functionality of the obtained polymers. The use of an alkyne functionalized initiator allowed further azide–alkyne Huisgen cycloaddition with 3-azido-7-diethylamino-coumarin, a fluorescent biocompatible molecule.
ACS Macro Letters | 2014
Joana P. Mendes; Fábio Branco; Carlos M. R. Abreu; Patrícia V. Mendonça; Anatoliy V. Popov; Tamaz Guliashvili; Arménio C. Serra; Jorge F. J. Coelho
An unusual synergistic effect between 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and dimethyl sulfoxide (DMSO) mixtures is reported for the supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of methyl acrylate (MA) using a catalytic system composed by sodium dithionate (Na2S2O4) and CuBr2/Me6TREN (Me6TREN: tris[2-(dimethylamino)ethyl]amine) at room temperature. To the best of our knowledge, the use of ionic liquids (IL) has never been reported for the SARA ATRP. The kinetic data obtained for a broad range of target molecular weights revealed very fast polymerization rates, low dispersity values (Đ < 1.05) and well-defined chain-end functionalities.
Russian Chemical Bulletin | 2000
Anatoliy V. Popov; A. N. Pushin; Elena L. Luzina
A convenient preparative method for the synthesis of 1,1-bis(trifluoromethyl)alkyl isocyanates was proposed. The reactions of the isocyanates with alcohols, phenols, and alkyl-, aryl-, and hetarylamines were studied.