Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anatoly B. Rosenfeld is active.

Publication


Featured researches published by Anatoly B. Rosenfeld.


European Journal of Nuclear Medicine and Molecular Imaging | 2003

From PET detectors to PET scanners

John L. Humm; Anatoly B. Rosenfeld; Alberto Del Guerra

This review describes the properties of available and emerging radiation detector and read-out technologies and discusses how they may affect PET scanner performance. After a general introduction, there is a section in which the physical properties of several different detector scintillators are compared. This is followed by a discussion of recent advances in read-out electronics. Finally, the physical performance of the several commercial PET scanners is summarized.


International Journal of Modeling, Simulation, and Scientific Computing | 2010

THE Geant4-DNA project

S. Incerti; G. Baldacchino; M.A. Bernal; R. Capra; C. Champion; Z. Francis; Susanna Guatelli; P. Gueye; A. Mantero; B. Mascialino; P. Moretto; P. Nieminen; Anatoly B. Rosenfeld; Carmen Villagrasa; Christina Zacharatou

The Geant4-DNA project proposes to develop an open-source simulation software based and fully included in the general-purpose Geant4 Monte-Carlo simulation toolkit. The main objective of this software is to simulate biological damages induced by ionizing radiations at the cellular and sub-cellular scale. This project was originally initiated by the European Space Agency for the prediction of the deleterious effects of radiations that may affect astronauts during future long duration space exploration missions. In this paper, the Geant4-DNA collaboration presents an overview of the whole on-going project, including its most recent developments that are available in the Geant4 toolkit since December 2009 (release 9.3), as well as an illustration example simulating the direct irradiation of a biological chromatin fiber. Expected extensions involving several research domains, such as particle physics, chemistry and cellular and molecular biology, within a fully interdisciplinary activity of the Geant4 collaboration are also discussed.


Medical Physics | 2007

Out-of-field dose equivalents delivered by proton therapy of prostate cancer

A Wroe; Anatoly B. Rosenfeld; Reinhard W. Schulte

Measurements were performed to assess the dose equivalent outside a primary proton treatment field, using a silicon-on-insulator (SOI) microdosimeter. The SOI microdosimeter was placed on the surface of an anthropomorphic phantom and dose equivalents were determined as a function of lateral distance from a typical passively scattered and modulated prostate treatment field. Measurements were also completed within a polystyrene plate phantom as a function of depth for a distance of 5 cm from the field edge, as function of lateral distance from field edge at two different depths, and as a function of distance from the distal edge on the central beam axis. The dose equivalent at the surface of the anthropomorphic phantom decreases from 3.9 to 0.18 mSv/Gy when the lateral distance from the proton field edge increases from 2.5 to 60 cm. Measurements along the proton depth dose distribution at a constant distance of 5 cm from the primary field edge indicate a decrease in dose equivalent as a function of depth, with a 38% decrease relative to the surface dose at a depth of 5 cm in polystyrene. Measurements completed as a function of lateral distance from the primary field at two separate depths within polystyrene illustrate a convergence of the dose equivalent at approximately 20 cm from the primary field edge. Past the distal edge of the spread-out Bragg peak dose equivalents decrease exponentially for increasing distance, with an initial value of 1.6 mSv/Gy at 0.6 cm from the distal edge. Silicon microdosimetry measurements were also compared with published results obtained utilizing different measurement techniques. This study demonstrates the applicability of SOI microdosimetry in determining the dose equivalent outside proton treatment fields, and provides valuable information on the dose equivalent both at the surface and at depth experienced by prostate cancer patients treated with protons.


Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2001

Solid state microdosimetry.

Peter D. Bradley; Anatoly B. Rosenfeld; Marco Zaider

A review of solid state microdosimetry is presented with an emphasis on silicon-based devices. The historical foundations and basics of microdosimetry are briefly provided. Various methods of experimental regional microdosimetry are discussed to facilitate a comparison with the more recent development of silicon microdosimetry. In particular, the performance characteristics of a proportional gas counter and a silicon microdosimeter are compared. Recent improvements in silicon microdosimetry address the issues of requirement specification, non-spherical shape, tissue equivalence, sensitive volume definition (charge collection complexity) and low noise requirements which have previously impeded the implementation of silicon-based microdosimetry. A prototype based on silicon-on-insulator technology is described along with some example results from clinical high LET radiotherapy facilities. A brief summary of the applications of microdosimetry is included.


Medical Physics | 2010

Total variation superiorization schemes in proton computed tomography image reconstruction

Scott Penfold; Reinhard W. Schulte; Yair Censor; Anatoly B. Rosenfeld

PURPOSE Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, the noise in the reconstructed image increases with successive iterations. In the current work, the authors investigated the use of total variation superiorization (TVS) schemes that can be applied as an algorithmic add-on to perturbation-resilient iterative projection algorithms for pCT image reconstruction. METHODS The block-iterative diagonally relaxed orthogonal projections (DROP) algorithm was used for reconstructing GEANT4 Monte Carlo simulated pCT data sets. Two TVS schemes added on to DROP were investigated; the first carried out the superiorization steps once per cycle and the second once per block. Simplifications of these schemes, involving the elimination of the computationally expensive feasibility proximity checking step of the TVS framework, were also investigated. The modulation transfer function and contrast discrimination function were used to quantify spatial and density resolution, respectively. RESULTS With both TVS schemes, superior spatial and density resolution was achieved compared to the standard DROP algorithm. Eliminating the feasibility proximity check improved the image quality, in particular image noise, in the once-per-block superiorization, while also halving image reconstruction time. Overall, the greatest image quality was observed when carrying out the superiorization once per block and eliminating the feasibility proximity check. CONCLUSIONS The low-contrast imaging made possible with TVS holds a promise for its incorporation into future pCT studies.


Medical Physics | 2007

Verification of the plan dosimetry for high dose rate brachytherapy using metal–oxide–semiconductor field effect transistor detectors

Zhen-Yu Qi; Xiao-Wu Deng; Shao-Min Huang; Jie Lu; Michael L. F Lerch; Dean L Cutajar; Anatoly B. Rosenfeld

The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192Ir sources were measured. The MOS-FET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility (<3%), small angular effect (<2%), and good dose linearity (R2=1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2 +/- 0.2% for dose points 1 cm away from the source and 2.0 +/- 0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments.


Medical Physics | 2009

Assessment of out-of-field absorbed dose and equivalent dose in proton fields

B Clasie; A Wroe; Hanne M. Kooy; Nicolas Depauw; J Flanz; Harald Paganetti; Anatoly B. Rosenfeld

PURPOSE In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. METHODS Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. RESULTS The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. CONCLUSIONS The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.


Medical Physics | 2006

Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.

Valéry Olivier Zilio; Om Parkash Joneja; Youri Popowski; Anatoly B. Rosenfeld; R. Chawla

Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an 192Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.


IEEE Transactions on Nuclear Science | 1998

Charge collection and radiation hardness of a SOI microdosimeter for medical and space applications

Peter D. Bradley; Anatoly B. Rosenfeld; K. K. Lee; D.N. Jamieson; Gernot Heiser; S. Satoh

The first results obtained using a SOI device for microdosimetry applications are presented. Microbeam and broadbeam spectroscopy methods are used for determining minority carrier lifetime and radiation damage constants. A spectroscopy model is presented which includes the majority of effects that impact spectral resolution. Charge collection statistics were found to substantially affect spectral resolution. Lateral diffusion effects significantly complicate charge collection.


Medical Physics | 2009

A more accurate reconstruction system matrix for quantitative proton computed tomography

Scott Penfold; Anatoly B. Rosenfeld; Reinhard W. Schulte; Keith E. Schubert

An accurate system matrix is required for quantitative proton CT (pCT) image reconstruction with iterative projection algorithms. The system matrix is composed of chord lengths of individual proton path intersections with reconstruction pixels. In previous work, reconstructions were performed assuming constant intersection chord lengths, which led to systematic errors of the reconstructed proton stopping powers. The purpose of the present work was to introduce a computationally efficient variable intersection chord length in order to improve the accuracy of the system matrix. An analytical expression that takes into account the discrete stepping nature of the pCT most likely path (MLP) reconstruction procedure was created to describe an angle-dependent effective mean chord length function. A pCT dataset was simulated with GEANT4 using a parallel beam of 200 MeV protons intersecting a computerized head phantom consisting of tissue-equivalent materials with known relative stopping power. The phantom stopping powers were reconstructed with the constant chord length, exact chord length, and effective mean chord length approaches, in combination with the algebraic reconstruction technique. Relative stopping power errors were calculated for each anatomical phantom region and compared for the various methods. It was found that the error of approximately 10% in the mean reconstructed stopping power value for a given anatomical region, resulting from a system matrix with a constant chord length, could be reduced to less than 0.5% with either the effective mean chord length or exact chord length approaches. Reconstructions with the effective mean chord length were found to be approximately 20% faster than reconstructions with an exact chord length. The effective mean chord length method provides the possibility for more accurate, computationally efficient quantitative pCT reconstructions.

Collaboration


Dive into the Anatoly B. Rosenfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean L Cutajar

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark I. Reinhard

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale A. Prokopovich

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Iwan Cornelius

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge