Anatoly N. Mikerov
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anatoly N. Mikerov.
Infection and Immunity | 2007
Anatoly N. Mikerov; Guirong Wang; Todd M. Umstead; Mario Zacharatos; Neal J. Thomas; David S. Phelps; Joanna Floros
ABSTRACT Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. Two functional genes, SP-A1 and SP-A2, encode human SP-A. As we showed before, baculovirus-mediated insect cell-expressed SP-A2 enhances the association of P. aeruginosa with rat alveolar macrophages (rAMs) more than does SP-A1. However, true phagocytosis (internalization) was not shown, and insect cell derived proteins lack or are defective in certain mammalian posttranslational modifications that may be important for SP-A1 and SP-A2 activity and specificity. Here we used SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A1) allele variants expressed by CHO (Chinese hamster ovary) mammalian cells to study their effect on association and/or internalization of P. aeruginosa by rAMs and/or human AMs (hAMs) and to study if phagocytosis can be modulated differentially and/or more effectively by CHO cell-expressed SP-A variants than by insect-cell expressed SP-A variants. For cell association and internalization assessments, light microscopy and fluorescence-activated cell sorter analyses were used, respectively. We found the following for the first time. (i) SP-A2 variants enhanced phagocytosis (cell association and/or internalization) of P. aeruginosa more than SP-A1 variants did, and the cell association correlated with internalization. (ii) Differences in the activities of SP-A variants were observed in the following order: 1A1>1A0>6A2>6A4. (iii) rAMs, although more active than hAMs, are an appropriate model, as SP-A2 variants exhibited activity higher than that seen for SP-A1 variants with either rAMs or hAMs. (iv) CHO cell-expressed SP-A was considerably more active than insect cell-expressed variants. We conclude that SP-A2 variants stimulate phagocytosis of P. aeruginosa more effectively than SP-A1 variants and that posttranslational modifications positively influence the phagocytic activity of SP-A.
Respiratory Research | 2008
Anatoly N. Mikerov; Rizwanul Haque; Xiaozhuang Gan; Xiaoxuan Guo; David S. Phelps; Joanna Floros
BackgroundSurfactant protein A (SP-A) enhances phagocytosis of bacteria, including Klebsiella pneumoniae, by alveolar macrophages. Ozone, a major air pollutant, can cause oxidation of surfactant and may influence lung immune function. Immune function may also be affected by sex-specific mechanisms. We hypothesized that ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure, and that sex differences in the effect of ozone do exist.MethodsMale and female SP-A (-/-) mice on the C57BL/6J background were exposed to ozone or to filtered air (FA) used as a control and then infected intratracheally with K. pneumoniae bacteria. Survival rate was monitored during a 14-day period. In addition, protein oxidation levels and in vivo phagocytosis were checked 1 h after inoculation of PBS used as a sham control and after inoculation of K. pneumoniae bacteria in PBS, respectively.ResultsWe found: 1) ozone exposure followed by K. pneumoniae infection decreases survival and alveolar macrophage phagocytic function of SP-A (-/-) mice compared to filtered air exposure (p < 0.05), and females are more affected than males; 2) SP-A (-/-) mice (exposed either to ozone or FA) are more susceptible to infection with K. pneumoniae than wild type (WT) mice regarding their survival rate and macrophage phagocytic function; the phagocytic function of FA SP-A(-/-) is similar to that of ozone exposed WT. 3) ozone exposure appears to increase infiltration of PMNs, total protein, and SP-A oxidation in WT mice; infiltration of PMNs and total protein oxidation appears to be more pronounced in female mice in response to ozone; 4) ozone exposure increases SP-A oxidation in WT females significantly more than in males.ConclusionAbsence (i.e. ablation of SP-A in SP-A (-/-) mice) or reduction of functional activity of SP-A (i.e. oxidation of SP-A in WT mice) increases the susceptibility of mice to experimental pneumonia after ozone exposure, and in both cases females are more affected by ozone exposure than males.
Respiratory Research | 2008
Anatoly N. Mikerov; Xiaozhuang Gan; Todd M. Umstead; Laura Miller; Vernon M. Chinchilli; David S. Phelps; Joanna Floros
BackgroundSex differences have been described in a number of pulmonary diseases. However, the impact of ozone exposure followed by pneumonia infection on sex-related survival and macrophage function have not been reported. The purpose of this study was to determine whether ozone exposure differentially affects: 1) survival of male and female mice infected with Klebsiella pneumoniae, and 2) the phagocytic ability of macrophages from these mice.MethodsMale and female C57BL/6 mice were exposed to O3 or to filtered air (FA) (control) and then infected intratracheally with K. pneumoniae bacteria. Survival was monitored over a 14-day period, and the ability of alveolar macrophages to phagocytize the pathogen in vivo was investigated after 1 h.Results1) Both male and female mice exposed to O3 are significantly more susceptible to K. pneumoniae infection than mice treated with FA; 2) although females appeared to be more resistant to K. pneumoniae than males, O3 exposure significantly increased the susceptibility of females to K. pneumoniae infection to a greater degree than males; 3) alveolar macrophages from O3-exposed male and female mice have impaired phagocytic ability compared to macrophages from FA-exposed mice; and 4) the O3-dependent reduction in phagocytic ability is greater in female mice.ConclusionO3 exposure reduces the ability of mice to survive K. pneumoniae infection and the reduced phagocytic ability of alveolar macrophages may be one of the contributing factors. Both events are significantly more pronounced in female mice following exposure to the environmental pollutant, ozone.
Medical Microbiology and Immunology | 2007
Anatoly N. Mikerov; Mitch White; Kevan L. Hartshorn; Guirong Wang; Joanna Floros
Surfactant protein A (SP-A) inhibits hemagglutination (HA) activity and infectivity of influenza A viruses (IAV). As we have showed before in different assays, SP-A2 gene products are more active than SP-A1. Here, we hypothesized that SP-A1 and SP-A2 mammalian CHO-cell-expressed proteins also differentially modulate HA inhibition of IAV. We found that both SP-A1 and SP-A2 equally displayed α(2,3)-linked sialic acids, and had similar activity against a strain (PR-8) that preferentially binds to α(2,3)-linked sialic acids. Based on these findings, we speculate that in human lung SP-A1 and SP-A2 will not be different in their activity against IAV that preferably bind to α(2,3)-linked sialic acids (like avian strains).
Experimental Lung Research | 2012
Faryal Durrani; David S. Phelps; Judith Weisz; Patricia Silveyra; Sanmei Hu; Anatoly N. Mikerov; Joanna Floros
Survival of mice after Klebsiella pneumoniae infection and phagocytosis by alveolar macrophages (AMs), in the presence or absence of ozone (O3) exposure prior to infection, is sex dependent. The objective of this work was to study the role of gonadal hormones, 5α-dihydrotestosterone (DHT) and 17β-estradiol (E2), on mouse survival after filtered air (FA) or O3 exposure. Gonadectomized female (G×F) and male (G×M) mice implanted with control or hormone pellets (DHT in G×F, or E2 in G×M), exposed to O3 (2 ppm, 3h) or FA, and infected with K. pneumoniae were monitored for survival. Survival in G×F was identical after FA or O3 exposure; in G×M O3 exposure resulted in lower survival compared to FA. In O3-exposed females, gonadectomy resulted in increased survival compared to intact females or to G×M+E2. A similar effect was observed in G×F+DHT. The combined negative effect of oxidative stress and hormone on survival was higher for E2. Gonadectomy eliminated (females) or minimized (males) the previously observed sex differences in survival in response to oxidative stress, and hormone treatment restored them. These findings indicate that gonadal hormones and/or oxidative stress have a significant effect on mouse survival.
Microbial Pathogenesis | 2012
Anatoly N. Mikerov; Sanmei Hu; Faryal Durrani; Xiaozhuang Gan; Guirong Wang; Todd M. Umstead; David S. Phelps; Joanna Floros
Female mice exhibited higher survival rate than males after pneumonia, with a reversal of this pattern following ozone exposure. Surfactant protein A (SP-A) plays an important role in innate immunity and SP-A (-/-) mice were more susceptible to pneumonia than wild type mice. Here, we investigated underlying mechanisms of the differential susceptibility of mice to pneumonia. Wild type and SP-A (-/-) C57BL/6J male and female mice were exposed to ozone or filtered air (FA) and then infected intratracheally with Klebsiella pneumoniae. Blood, spleen, and lung were analyzed for bacterial counts, lung and spleen weights, and sex hormone and cortisol levels were measured in plasma within two days post-infection. We found: 1) in the absence of ozone-induced oxidative stress, males had higher level of bacterial dissemination compared to females; ozone exposure decreased pulmonary clearance in both sexes and ozone-exposed females were more affected than males; 2) ozone exposure increased lung weight, but decreased spleen weight in both sexes, and in both cases ozone-exposed females were affected the most; 3) plasma cortisol levels in infected mice changed: ozone-exposed>FA-exposed, females>males, and infected>non-infected; 4) no major sex hormone differences were observed in the studied conditions; 5) differences between wild type and SP-A (-/-) mice were observed in some of the studied conditions. We concluded that reduced pulmonary clearance, compromised spleen response to infection, and increased cortisol levels in ozone-exposed females, and the higher level of lung bacterial dissemination in FA-exposed males, contribute to the previously observed survival outcomes.
Proteome Science | 2010
Mehboob Ali; Todd M. Umstead; Rizwanul Haque; Anatoly N. Mikerov; Willard M. Freeman; Joanna Floros; David S. Phelps
BackgroundSurfactant protein-A (SP-A) has been shown to play a variety of roles related to lung host defense function. Mice lacking SP-A are more susceptible to infection than wild type C57BL/6 mice. We studied bronchoalveolar lavage (BAL) protein expression in wild type and SP-A-/- mice infected with Klebsiella pneumoniae by 2D-DIGE.MethodsMice were infected intratracheally with K. pneumoniae and after 4 and 24 hours they were subject to BAL. Cell-free BAL was analyzed by 2D-DIGE on two-dimensional gels with pH ranges of 4-7 and 7-11. Under baseline conditions and at 4 and 24 hr post-infection BAL was compared between untreated and infected wild type and SP-A-/- mice. Sixty proteins identified by mass spectrometry were categorized as host defense, redox regulation, and protein metabolism/modification.ResultsWe found: 1) ~75% of 32 host defense proteins were lower in uninfected SP-A-/- vs wild type, suggesting increased susceptibility to infection or oxidative injury; 2) At 4 hr post-infection > 2/3 of identified proteins were higher in SP-A-/- than wild type mice, almost the exact opposite of untreated mice; 3) At 24 hr post-infection some proteins continued increasing, but many returned to baseline; 4) In infected wild type mice significant changes occurred in 13 of 60 proteins, with 12 of 13 increasing, vs on 4 significant changes in SP-A-/- mice. Infection response patterns between strains demonstrated both commonalities and differences. In several cases changes between 4 and 24 hr followed different patterns between strains.ConclusionsThese indicate that SP-A plays a key role in regulating the BAL proteome, functioning indirectly to regulate lung host defense function, possibly via the macrophage. In the absence of SP-A baseline levels of many host defense molecules are lower. However, many of these indirect deficits in SP-A-/- mice are rapidly compensated for during infection, indicating that SP-A also has a direct role on host defense against K. pneumoniae that may be instrumental in determining clinical course.
Toxicology Letters | 2014
Anatoly N. Mikerov; David S. Phelps; Xiaozhuang Gan; Todd M. Umstead; Rizwanul Haque; Guirong Wang; Joanna Floros
Female mice exhibit a better survival rate than males after infection, but if infection follows an ozone-induced oxidative stress, male survival exceeds that of females. Our goal was to study bronchoalveolar lavage factors that contribute to these sex differences in outcome. We studied parameters at 4, 24, and 48 h after ozone exposure and infection, including markers of inflammation, oxidative stress, and tissue damage, and surfactant phospholipids and surfactant protein A (SP-A). A multianalyte immunoassay at the 4h time point measured 59 different cytokines, chemokines, and other proteins. We found that: (1) Although some parameters studied revealed sex differences, no sex differences were observed in LDH, total protein, MIP-2, and SP-A. Males showed more intragroup significant differences in SP-A between filtered air- and ozone-exposed mice compared to females. (2) Oxidized dimeric SP-A was higher in FA-exposed female mice. (3) Surfactant phospholipids were typically higher in males. (4) The multianalyte data revealed differences in the exuberance of responses under different conditions - males in response to infection and females in response to oxidative stress. These more exuberant, and presumably less well-controlled responses associate with the poorer survival. We postulate that the collective effects of these sex differences in response patterns of lung immune cells may contribute to the clinical outcomes previously observed.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Anatoly N. Mikerov; Todd M. Umstead; Xiaozhuang Gan; Weixiong Huang; Xiaoxuan Guo; Guirong Wang; David S. Phelps; Joanna Floros
American Journal of Physiology-lung Cellular and Molecular Physiology | 2005
Anatoly N. Mikerov; Todd M. Umstead; Weixiong Huang; Wenlei Liu; David S. Phelps; Joanna Floros