Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anatoly V. Kasatkin is active.

Publication


Featured researches published by Anatoly V. Kasatkin.


Mineralogical Magazine | 2013

Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA

Jakub Plášil; A. R. Kampf; Anatoly V. Kasatkin; Joe Marty; Radek Škoda; Steve Silva; Jiří Čejka

Abstract Meisserite (IMA2013-039), Na5(UO2)(SO4)3(SO3OH)(H2O), is a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah (USA). It is named in honour of the prominent Swiss mineralogist Nicolas Meisser. The new mineral was found in a sandstone matrix and is associated with chalcanthite, copiapite, ferrinatrite, gypsum, johannite and another new Na-bearing uranyl sulfate, belakovskiite (IMA2013-075). Meisserite is a secondary mineral formed by the post-mining weathering of uraninite. The mineral is triclinic, P1̄, a = 5.32317(10), b = 11.5105(2), c = 13.5562(10) Å, α = 102.864(7)º, β = 97.414(7)º, γ = 91.461(6)º, V = 801.74(6) Å3, and Z = 2. Crystals are prisms elongated on [100], up to 0.3 mm long, exhibiting the forms {010} and {001}. Meisserite is pale green to yellowish green, translucent to transparent and has a very pale yellow streak. It is brittle, with fair cleavage on {100} and {001}, and uneven fracture. The Mohs hardness is estimated at 2. Meisserite is somewhat hygroscopic and easily soluble in water. The calculated density based on the empirical formula is 3.208 g/cm3. Meisserite exhibits bright yellow green fluorescence under both long- and shortwave UV radiation. The mineral is optically biaxial (-), with α = 1.514(1), β = 1.546(1), γ = 1.557(1) (measured in white light). The measured 2V is 60(2)º and the calculated 2V is 60º. Dispersion is r > v, perceptible, and the optical orientation is X≈a, Z≈c*. The mineral is pleochroic, with X (colourless) < Y (pale yellow) ≈ Z (pale greenish yellow). The empirical formula of meisserite (based on 19 O a.p.f.u.) is Na5.05(U0.94O2)(SO4)3[SO2.69(OH)1.31](H2O). The Raman spectrum is dominated by the symmetric stretching vibrations of UO22+, SO42- and also weaker O-H stretching vibrations. The eight strongest powder X-ray diffraction lines are [dobs in Å (hkl) Irel]: 13.15 (001) 81, 6.33 (01̄2) 62, 5.64 (02̅1, 020) 52, 5.24 (100, 012, 1̄01) 100, 4.67 (101) 68, 3.849 (1̄2̅1, 102, 022) 48, 3.614 (03̄2, 1̄1̄3) 41, and 3.293 (1̄13, 004) 43. The crystal structure of meisserite (R1 = 0.018 for 3306 reflections with Iobs > 3σl) is topologically unique among known structures of uranyl minerals and inorganic compounds. It contains uranyl pentagonal bipyramids linked by SO4 groups to form chains. Na+ cations bond to O atoms in the chains and to an SO3OH group and an H2O group between the chains, thereby forming a heteropolyhedral framework.


American Mineralogist | 2014

Mathesiusite, K5(UO2)4(SO4)4(VO5)(H2O)4, a new uranyl vanadate-sulfate from Jáchymov, Czech Republic

Jakub Plášil; František Veselovský; Jan Hloušek; Radek Škoda; Milan Novák; Jiří Sejkora; Jiří Čejka; Pavel Škácha; Anatoly V. Kasatkin

Abstract Mathesiusite, K5(UO2)4(SO4)4(VO5)(H2O)4, a new uranyl vanadate-sulfate mineral from Jáchymov, Western Bohemia, Czech Republic, occurs on fractures of gangue associated with adolfpateraite, schoepite, čejkaite, zippeite, gypsum, and a new unnamed K-UO2-SO4 mineral. It is a secondary mineral formed during post-mining processes. Mathesiusite is tetragonal, space group P4/n, with the unit-cell dimensions a = 14.9704(10), c = 6.8170(5) Å, V = 1527.78(18) Å3, and Z = 2. Acicular aggregates of mathesiusite consist of prismatic crystals up to ~200 μm long and several micrometers thick. It is yellowish green with a greenish white streak and vitreous luster. The Mohs hardness is ~2. Mathesiusite is brittle with an uneven fracture and perfect cleavage on {110} and weaker on {001}. The calculated density based on the empirical formula is 4.02 g/cm3. Mathesiusite is colorless in fragments, uniaxial (-), with ω = 1.634(3) and ε = 1.597(3). Electron microprobe analyses (average of 7) provided: K2O 12.42, SO3 18.04, V2O5 4.30, UO3 61.46, H2O 3.90 (structure), total 100.12 (all in wt%). The empirical formula (based on 33 O atoms pfu) is: K4.87(U0.99O2)4(S1.04O4)4(V0.87O5)(H2O)4. The eight strongest powder X-ray diffraction lines are [dobs in Å (hkl) Irel]: 10.64 (110) 76, 7.486 (200) 9, 6.856 (001) 100, 6.237 (101) 85, 4.742 (310) 37, 3.749 (400) 27, 3.296 (401) 9, and 2.9409 (510) 17. The crystal structure of mathesiusite was solved from single-crystal X-ray diffraction data and refined to R1 = 0.0520 for 795 reflections with I > 3σ(I). It contains topologically unique heteropolyhedral sheets based on [(UO2)4(SO4)4(VO5)]5- clusters. These clusters arise from linkages between corner-sharing quartets of uranyl pentagonal bipyramids, which define a square-shaped void at the center that is occupied by V5+ cations. Each pair of uranyl pentagonal bipyramids shares two vertices of SO4 tetrahedra. Each SO4 shares a third vertex with another cluster to form the sheets. The K+ cations are located between the sheets, together with a single H2O group. The corrugated sheets are stacked perpendicular to c. These heteropolyhedral sheets are similar to those in the structures of synthetic uranyl chromates. Raman spectral data are presented confirming the presence of UO22+, SO4, and molecular H2O.


Mineralogical Magazine | 2013

Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA

Anatoly V. Kasatkin; Fabrizio Nestola; Jakub Plášil; J. Marty; Dmitriy I. Belakovskiy; Atali A. Agakhanov; S. J. Mills; Danilo Pedron; Arianna Lanza; M. Favaro; S. Bianchin; Inna S. Lykova; Viktor Goliáš; William D. Birch

Abstract Two new minerals - manganoblödite (IMA2012-029), ideally Na2Mn(SO4)2·4H2O, and cobaltoblödite (IMA2012-059), ideally Na2Co(SO4)2·4H2O, the Mn-dominant and Co-dominant analogues of blödite, respectively, were found at the Blue Lizard mine, San Juan County, Utah, USA. They are closely associated with blödite (Mn-Co-Ni-bearing), chalcanthite, gypsum, sideronatrite, johannite, quartz and feldspar. Both new minerals occur as aggregates of anhedral grains up to 60 μm (manganoblödite) and 200 μm (cobaltoblödite) forming thin crusts covering areas up to 2 × 2 cm on the surface of other sulfates. Both new species often occur as intimate intergrowths with each other and also with Mn-Co-Ni-bearing blödite. Manganoblödite and cobaltoblödite are transparent, colourless in single grains and reddish-pink in aggregates and crusts, with a white streak and vitreous lustre. Their Mohs‘ hardness is ~2½. They are brittle, have uneven fracture and no obvious parting or cleavage. The measured and calculated densities are Dmeas = 2.25(2) g cm−3 and Dcalc = 2.338 g cm−3 for manganoblödite and Dmeas = 2.29(2) g cm−3 and Dcalc = 2.347 g cm−3 for cobaltoblödite. Optically both species are biaxial negative. The mean refractive indices are α = 1.493(2), β = 1.498(2) and γ = 1.501(2) for manganoblödite and α = 1.498(2), β = 1.503(2) and γ = 1.505(2) for cobaltoblödite. The chemical composition of manganoblödite (wt.%, electron-microprobe data) is: Na2O 16.94, MgO 3.29, MnO 8.80, CoO 2.96, NiO 1.34, SO3 45.39, H2O (calc.) 20.14, total 98.86. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Mn0.44Mg0.29Co0.14Ni0.06)Σ0.93S2.03O8·4H2O. The chemical composition of cobaltoblödite (wt.%, electron-microprobe data) is: Na2O 17.00, MgO 3.42, MnO 3.38, CoO 7.52, NiO 2.53, SO3 45.41, H2O (calc.) 20.20, total 99.46. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Co0.36Mg0.30Mn0.17Ni0.12)Σ 0.95S2.02O8·4H2O. Both minerals are monoclinic, space group P21/a, with a = 11.137(2), b = 8.279(1), c = 5.5381(9) Å, β = 100.42(1)°, V = 502.20(14) Å3 and Z = 2 (manganoblödite); and a = 11.147(1), b = 8.268(1), C = 5.5396(7) Å, β = 100.517(11)°, V = 501.97(10) Å3 and Z = 2 (cobaltoblödite). The strongest diffractions from X-ray powder pattern [listed as (d,Å(I)(hkl)] are for manganoblödite: 4.556(70)(210, 011); 4.266(45)(2̅01); 3.791(26)(2̅11); 3.338(21)(310); 3.291(100)(220, 021), 3.256(67)(211,1̅21), 2.968(22)(2̅21), 2.647(24)(4̅01); for cobaltoblödite: 4.551(80)(210, 011); 4.269(50)(2̅01); 3.795(18)(2̅11); 3.339(43)(310); 3.29(100)(220, 021), 3.258(58)(211, 1̅21), 2.644(21)( 4̅01), 2.296(22)( 1̅22). The crystal structures of both minerals were refined by single-crystal X-ray diffraction to R1 = 0.0459 (manganoblödite) and R1 = 0.0339 (cobaltoblödite).


Mineralogical Magazine | 2015

Shilovite, natural copper(II) tetrammine nitrate, a new mineral species

N. V. Chukanov; Sergey N. Britvin; Gerhard Möhn; Igor V. Pekov; N. V. Zubkova; Fabrizio Nestola; Anatoly V. Kasatkin; M. Dini

Abstract The new mineral shilovite, the first natural tetrammine copper complex, was found in a guano deposit located on the Pabellón de Pica Mountain, near Chanabaya, Iquique Province, Tarapacá Region, Chile. It is associated with halite, ammineite, atacamite (a product of ammineite alteration) and thénardite. The gabbro host rock consists of amphibole, plagioclase and minor clinochlore, and contains accessory chalcopyrite. The latter is considered the source of Cu for shilovite. The new mineral occurs as deep violet blue, imperfect, thick tabular to equant crystals up to 0.15 mm in size included in massive halite. The mineral is sectile. Its Mohs hardness is 2. Dcalc is 1.92 g cm-3. The infrared spectrum shows the presence of NH3 molecules and NO3- anions. Shilovite is optically biaxial (+), α = 1.527(2), β = 1.545(5), γ = 1.610(2). The chemical composition (electron-microprobe data, H calculated from ideal formula, wt.%) is Cu 26.04, Fe 0.31, N 30.8, O 35.95, H 4.74, total 100.69. The empirical formula is H12.56(Cu1.09Fe0.01)N5.87O6.00. The idealized formula is Cu(NH3)4(NO3)2. The crystal structure was solved and refined to R = 0.029 based upon 2705 unique reflections having F > 4σ(F). Shilovite is orthorhombic, space group Pnn2, a = 23.6585(9), b = 10.8238(4), c = 6.9054(3) Å , V = 1768.3(1) Å3, Z = 8. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (hkl)] are: 5.931 (41) (400), 5.841 (100) (011), 5.208 (47) (410), 4.162 (88) (411), 4.005 (62) (420), 3.462 (50) (002), 3.207 (32) (031), 2.811 (40) (412).


Mineralogical Magazine | 2014

Belakovskiite, Na7(UO2)(SO4)4(SO3OH)(H2O)3, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA

A. R. Kampf; Jakub Plášil; Anatoly V. Kasatkin; Joe Marty

Abstract The new mineral belakovskiite (IMA2013-075), Na7(UO2)(SO4)4(SO3OH)(H2O)3, was found in the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA, where it occurs as a secondary alteration phase in association with blödite, ferrinatrite, kröhnkite, meisserite and metavoltine. Crystals of belakovskiite are very pale yellowish-green hair-like fibres up to 2 mm long and usually no more than a few mm in diameter. The fibres are elongated on [100] and slightly flattened on {021}. Crystals are transparent with a vitreous lustre. The mineral has a white streak and a probable Mohs hardness of ~2. Fibres are flexible and elastic, with brittle failure and irregular fracture. No cleavage was observed. The mineral is readily soluble in cold H2O. The calculated density is 2.953 g cm-3. Optically, belakovskiite is biaxial (+) with α = 1.500(1), β = 1.511(1) and γ = 1.523(1) (measured in white light). The measured 2V is 87.1(6)° and the calculated 2V is 88°. The mineral is non-pleochroic. The partially determined optical orientation is X ≈ a. Electron-microprobe analysis provided Na2O 21.67, UO3 30.48, SO3 40.86, H2O 6.45 (structure), total 99.46 wt.% yielding the empirical formula Na6.83(U1.04O2)(SO4)4(S0.99O3OH)(H2O)3 based on 25 O a.p.f.u. Belakovskiite is triclinic, P1̄, with a = 5.4581(3), b = 11.3288(6), c = 18.4163(13) Å, = 104.786(7)º, b = 90.092(6)°, g = 96.767(7)°, V = 1092.76(11) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 8.96(35)(002), 8.46(29)(011), 5.19(100)(1.01,101,1̄10), 4.66(58)(013,1̄02,1̄1̄0,110), 3.568(37)(120,023,005,03̄3), 3.057(59)(01̄6,11̄5,1̄31), 2.930(27)(multiple) and 1.8320(29)(multiple). The structure, refined to R1 = 5.39% for 3163 Fo > 4σF reflections, contains [(UO2)(SO4)4(H2O)]6- polyhedral clusters connected via an extensive network of Na-O bonds and H bonds involving eight Na sites, three other H2O sites and an SO3OH (hydrosulfate) group. The 3-D framework, thus defined, is unique among known uranyl sulfate structures. The mineral is named for Dmitry Ilych Belakovskiy, a prominent Russian mineralogist and Curator of the Fersman Mineralogical Museum.


Mineralogical Magazine | 2013

Leydetite, Fe(UO2)(SO4)2(H2O)11, a new uranyl sulfate mineral from Mas d'Alary, Lodève, France

Jakub Plášil; Anatoly V. Kasatkin; Radek Škoda; Milan Novák; Anna Kallistová; Michal Dušek; Roman Skála; Karla Fejfarová; Jiří Čejka; Nicolas Meisser; Herman Goethals; Vladimír Machovič; Ladislav Lapčák

Abstract Leydetite, monoclinic Fe(UO2)(SO4)2(H2O)11 (IMA 2012−065), is a new supergene uranyl sulfate from Mas d’Alary, Lodève, Hérault, France. It forms yellow to greenish, tabular, transparent to translucent crystals up to 2 mm in size. Crystals have a vitreous lustre. Leydetite has a perfect cleavage on (001). The streak is yellowish white. Mohs hardness is ~2. The mineral does not fluoresce under long- or shortwavelength UV radiation. Leydetite is colourless in transmitted light, non-pleochroic, biaxial, with α = 1.513(2), γ= 1.522(2) (further optical properties could not be measured). The measured chemical composition of leydetite, FeO 9.28, MgO 0.37, Al2O3 0.26, CuO 0.14, UO3 40.19, SO3 21.91, SiO2 0.18, H2O 27.67, total 100 wt.%, leads to the empirical formula (based on 21 O a.p.f.u.), (Fe0.93Mg0.07Al0.04Cu0.01)∑1.05(U1.01O2)(S1.96Si0.02)S1.98O8(H2O)11. Leydetite is monoclinic, space group C2/c, with a = 11.3203(3), b = 7.7293(2), c = 21.8145(8) Å, β = 102.402(3)°, V = 1864.18(10) Å3, Z = 4, and Dcalc = 2.55 g cm−3. The six strongest reflections in the X-ray powder diffraction pattern are [dobs inA ˚ (I) (hkl)]: 10.625 (100) (002), 6.277 (1) (1̅11), 5.321 (66) (004), 3.549 (5) (006), 2.663 (4) (008), 2.131 (2) (0 0 10). The crystal structure has been refined from single-crystal X-ray diffraction data to R1 = 0.0224 for 5211 observed reflections with [I > 3σ(I)]. Leydetite possesses a sheet structure based upon the protasite anion topology. The sheet consists of UO7 bipyramids, which share four of their equatorial vertices with SO4 tetrahedra. Each SO4 tetrahedron, in turn, shares two of its vertices with UO7 bipyramids. The remaining unshared equatorial vertex of the bipyramid is occupied by H2O, which extends hydrogen bonds within the sheet to one of a free vertex of the SO4 tetrahedron. Sheets are stacked perpendicular to the c direction. In the interlayer, Fe2+ ions and H2O groups link to the sheets on either side via a network of hydrogen bonds. Leydetite is isostructural with the synthetic compound Mg(UO2)(SO4)2(H2O)11. The name of the new mineral honours Jean Claude Leydet (born 1961), an amateur mineralogist from Brest (France), who discovered the new mineral.


Mineralogical Magazine | 2015

Fermiite, Na4(UO2)(SO4)3·3H2O and oppenheimerite, Na2(UO2)(SO4)2·3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA

Anthony R. Kampf; Jakub Plášil; Anatoly V. Kasatkin; Joe Marty; Jiří Čejka

Abstract The new minerals fermiite (IMA2014-068), Na4(UO2)(SO4)3·3H2O and oppenheimerite (IMA2014-073), Na2(UO2)(SO4)2·3H2O, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary alteration phases in association with blödite, bluelizardite, chalcanthite, epsomite, gypsum, hexahydrite, krohnkite, manganoblodite, sideronatrite, tamarugite and wetherillite. Fermiite descriptive details: pale greenish-yellow prisms; transparent; vitreous lustre; bright greenish- white fluorescence; white streak; hardness (Mohs) 2½; brittle; conchoidal fracture; no cleavage; slightly deliquescent; easily soluble in RT H2O; densitymeas = 3.23(2) g cm-3; densitycalc = 3.313 g cm-3. Optically, biaxial (+), α = 1.527(1), (β= 1.534(1), γ = 1.567(1) (white light); 2Vmeas = 51(1)°, 2Vcalc = 50°; dispersion r < v, distinct. Pleochroism: X, Y = colourless, Z = pale greenish yellow; X= Y < Z. Energy dispersive spectroscopic (EDS) analyses yielded the empirical formula Na3.88(U1.05O2)(S0.99O4)3(H2O)3. Fermiite is orthorhombic, Pmn21, a = 11.8407(12), b = 7.8695(5), c = 15.3255(19) Å, V= 1428.0(2) Å3 and Z = 4. The structure (R1 = 2.21% for 1951 Io > 3σl) contains [(UO2)(SO4)3] chains that are linked by bonds involving five different Na-O polyhedra to form a framework. The mineral is named for Italian-American theoretical and experimental physicist Dr. Enrico Fermi (1901-1954). Oppenheimerite descriptive details: pale greenish-yellow prisms; transparent; vitreous lustre; bright greenish-white fluorescence; white streak; hardness (Mohs) 2½; slightly sectile; three good cleavages, {11̅0}, {011} and {101}; irregular fracture; slightly deliquescent; easily soluble in RT H2O; densitycalc = 3.360 g cm-3. Optically, biaxial (+), α = 1.537(1), β = 1.555(1), y = 1.594(1) (white light); 2Vmeas. = 72(2)°, 2Vcalc = 70°; dispersion is r > v, moderate, inclined; optical orientation: X ≈ ⊥ {101}, Z ≈ [111̅]; pleochroism: X very pale greenish yellow, Y pale greenish yellow, Z greenish yellow; X < Y < Z. EDS analyses yielded the empirical formula Na1.94(U0.97O2)(S1.02O4)2(H2O)3. Oppenheimerite is triclinic, P1̅, a = 7.9576(6), 6 = 8.1952(6), c = 9.8051 (7) Å, α = 65.967(5)’ β = 70.281 (5), y = 84.516(6)°, V= 549.10(8) Å3 and Z = 2. The structure (Rx = 3.07% for 2337 I0 > 3σI) contains [(UO2)(SO4)2(H2O)] chains that are linked by bonds involving two different Na-O polyhedra to form a framework. The mineral is named for American theoretical physicist Dr. J. Robert Oppenheimer (1904-1967).


Mineralogical Magazine | 2015

Bobcookite, NaAl(UO2)2(SO4)4·18H2O and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA

Anthony R. Kampf; Jakub Plášil; Anatoly V. Kasatkin; Joe Marty

Abstract The new minerals bobcookite (IMA 2014-030), NaAl(UO2)2(SO4)4·18H2O and wetherillite (IMA 2014- 044), Na2Mg(UO2)2(SO4)4·18H2O, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary alteration phases in association with boyleite, chalcanthite, dietrichite, gypsum, hexahydrite, johannite, pickeringite and rozenite. Bobcookite descriptive details: lime green to greenish-yellow massive veins and columnar crystals; transparent; vitreous lustre; bright greenish-white fluorescence; pale greenish yellow streak; hardness (Mohs) 2½; brittle; conchoidal fracture; no cleavage; moderately hygroscopic; easily soluble in cold H2O; densitycalc = 2.669 g cm-3. Optically, biaxial (–), α = 1.501(1), β = 1.523(1), γ = 1.536(1) (white light); 2Vmeas. = 78(1)°; 2Vcalc. = 74°; dispersion r < v, moderate. Pleochroism: X colourless, Y very pale yellowgreen, Z pale yellow-green; X < Y < Z. EDS analyses yielded the empirical formula Na0.97Al1.09(U1.02O2)2(S0.98O4)4(H2O)18. Bobcookite is triclinic, P1̅, a = 7.7912(2), b = 10.5491(3), c = 11.2451(8) Å, α = 68.961(5), β = 70.909(5), γ = 87.139(6)º, V = 812.79(8) Å3 and Z = 1. The structure (R1 = 1.65% for 3580 Fo > 4σF) contains [(UO2)(SO4)2(H2O)] chains linked by NaO4(H2O)2 octahedra to form layers. Hydrogen bonds to insular Al(H2O)6 octahedra and isolated H2O groups hold the structure together. The mineral is named for Dr Robert (Bob) B. Cook of Auburn University, Alabama, USA. Wetherillite descriptive details: pale greenish-yellow blades; transparent; vitreous lustre; white streak; hardness (Mohs) 2; brittle; two cleavages, {101̅ } perfect and {010} fair; conchoidal or curved fracture; easily soluble in cold H2O; densitycalc = 2.626 g cm-3. Optically, biaxial (+), α = 1.498(1), β = 1.508(1), γ = 1.519(1) (white light); 2Vmeas. = 88(1)°, 2Vcalc. = 87.9º; dispersion is r < v, distinct; optical orientation: Z = b, X ^ a = 54º in obtuse β; pleochroism: X colourless, Y pale yellow-green, Z pale yellow-green; X < Y ≈ Z. EDS analyses yielded the empirical formula Na1.98(Mg0.58Zn0.24Cu0.11Fe2+0.09)∑1.02 (U1.04O2)2(S0.98O4)4(H2O)18. Wetherillite is monoclinic, P21/c, a = 20.367(1), b = 6.8329(1), c = 12.903(3) Å, β = 107.879(10)º, V = 1709.0(5) Å3 and Z = 2. The structure (R1 = 1.39% for 3625 Fo > 4σF) contains [(UO2)(SO4)2(H2O)] sheets parallel to {100}. Edge-sharing chains of Na(H2O)5O polyhedra link adjacent uranyl sulfate sheets forming a weakly bonded three-layer sandwich. The sandwich layers are linked to one another by hydrogen bonds through insular Mg(H2O)6 octahedra and isolated H2O groups. The mineral is named for John Wetherill (1866-1944) and George W. Wetherill (1925-2006).


Mineralogical Magazine | 2012

Calciodelrioite, Ca(VO3)2(H2O)4, the Ca analogue of delrioite, Sr(VO3)2(H2O)4

A. R. Kampf; Joe Marty; Barbara P. Nash; Jakub Plášil; Anatoly V. Kasatkin; Radek Škoda

Abstract Calciodelrioite, ideally Ca(VO3)2(H2O)4, is a new mineral (IMA 2012-031) from the uraniumvanadium deposits of the eastern Colorado Plateau in the USA. The type locality is the West Sunday mine, Slick Rock district, San Miguel County, Colorado. The new mineral occurs on fracture surfaces in corvusite- and montroseite-impregnated sandstone and forms as a result of the oxidative alteration of these phases. At the West Sunday mine, calciodelrioite is associated with celestine, gypsum, huemulite, metarossite, pascoite and rossite. The mineral occurs as transparent colourless needles, bundles of tan to brown needles and star bursts of nearly black broad blades composed of tightly intergrown needles. Crystals are elongate and striated parallel to [100], exhibiting the prismatic forms {001} and {011} and having terminations possibly composed of the forms {100} and {611̅ }. The mineral is transparent and has a white streak, subadamantine lustre, Mohs hardness of about 2½, brittle tenacity, irregular to splintery fracture, one perfect cleavage on {001} and possibly one or more additional cleavages parallel to [100]. Calciodelrioite is soluble in water. The calculated density is 2.451 g cm-3. It is optically biaxial (+) with α = 1.733(3), β = 1.775(3), γ = 1.825(3) (white light), 2Vmeas = 87.3(9)º and 2Vcalc = 87º. The optical orientation is X = b; Z ≈ a. No pleochroism was observed. Electronmicroprobe analyses of two calciodelrioite samples and type delrioite provided the empirical formulae (Ca0.88Sr0.07Na0.04K0.01)∑1.00(V1.00O3)2(H2.01O)4, (Ca0.76Sr0.21Na0.01)∑0.98(V1.00O3)2(H2.01O)4 and (Sr0.67Ca0.32)∑0.99(V1.00O3)2(H2.00O)4 respectively. Calciodelrioite is monoclinic, I2/a, with unit-cell parameters a = 14.6389(10), b = 6.9591(4), c = 17.052(2) Å, β = 102.568(9)º, V = 1695.5(3) Å3 and Z = 8. The seven strongest lines in the X-ray powder diffraction pattern [listed as dobs (I)(hkl)] are as follows: 6.450(100)(011); 4.350(16)(013); 3.489(18)(020); 3.215(17)(022); 3.027(50)(multiple); 2.560(28)(4̅15,413); 1.786(18)(028). In the structure of calciodelrioite (refined to R1 = 3.14% for 1216 Fo > 4σF), V5+O5 polyhedra link by sharing edges to form a zigzag divanadate [VO3] chain along a, similar to that in the structure of rossite. The chains are linked via bonds to Ca atoms, which also bond to H2O groups, yielding CaO3(H2O)6 polyhedra. The Ca polyhedra form a chain along b. Each of the two symmetrically independent VO5 polyhedra has two short vanadyl bonds and three long equatorial bonds. Calciodelrioite and delrioite are isostructural and are the endmembers of the series Ca(VO3)2(H2O)4-Sr(VO3)2(H2O)4. Calciodelrioite is dimorphous with rossite, which has a similar structure; however, the smaller 8-coordinate Ca site in rossite does not accommodate Sr.


Mineralogical Magazine | 2015

Geschieberite, K2(UO2)(SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov

Jakub Plášil; Jan Hloušek; Anatoly V. Kasatkin; Radek Škoda; Milan Novák; Jiří Čejka

Abstract The new mineral geschieberite (IMA2014-006), K2(UO2)(SO4)2(H2O)2, was found in the Svornost mine, Jáchymov, Czech Republic, where it occurs as a secondary alteration phase after uraninite in association with adolfpateraite and gypsum. Geschieberite forms crystalline aggregates of bright green colour (when thick) composed of multiply intergrown prismatic crystals elongated on [001] typically reaching 0.1-0.2 mm across; observable forms are {010} and {001}. Crystals are translucent to transparent with a vitreous lustre. The mineral is brittle, with perfect cleavage on {100} and an uneven fracture. It has a greenish-white streak and a probable Mohs hardness of ~2. The mineral is slightly soluble in cold H2O. The calculated density is 3.259 g cm-3. The mineral exhibits strong yellowish-green fluorescence under both shortwave and longwave UV radiation. Optically, geschieberite is biaxial (-), with β = 1.596(2) and γ = 1.634(4) (measured at 590 nm), with X = a. Electron-microprobe analyses provided Na2O 0.23, K2O 14.29, MgO 2.05, CaO 0.06, UO3 49.51, SO3 27.74, H2O 6.36 (structure), total 100.24 wt.%, yielding the empirical formula (K1.72Mg0.29Na0.04Ca0.01)S2.06 (U0.98O2)(S0.98O4)2(H2O)2 based on 12 O atoms per formula unit. The Raman spectrum is dominated by the symmetric stretching vibrations of UO22+, SO42- and weaker O-H stretching vibrations. Geschieberite is orthorhombic, Pna21, with a = 13.7778(3), b = 7.2709(4), c = 11.5488(2) Å, V = 1156.92(7) Å3, Z = 4. The eight strongest powder X-ray diffraction lines are [dobs in Å (hkl) Irel]: 6.882 (200) 100, 5.622 (111) 53, 4.589 (211) 12, 4.428 (202) 16, 3.681 (311) 18, 3.403 (013) 12, 3.304 (401,1.13) 15 and 3.006 (122) 17. The structure, refined to R = 0.028 for 1882 I > 3σ(I) reflections, contains [(UO2)(SO4)2(H2O)]2- sheets that are based on the protasite anion topology. Sheets are stacked perpendicular to a. Potassium atoms and one H2O molecule are located between these sheets, providing an interlayer linkage. The remaining H2O molecule is localized within the structural unit, at the free vertex of the uranyl pentagonal bipyramid; this vertex does not link to sulfate tetrahedra. The mineral is named for one of the most important ore veins in Jáchymov - the Geschieber vein.

Collaboration


Dive into the Anatoly V. Kasatkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony R. Kampf

Natural History Museum of Los Angeles County

View shared research outputs
Top Co-Authors

Avatar

Jiří Čejka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atali A. Agakhanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. V. Chukanov

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge