Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anbang He is active.

Publication


Featured researches published by Anbang He.


Oncotarget | 2016

shRNA targeting long non-coding RNA CCAT2 controlled by tetracycline-inducible system inhibits progression of bladder cancer cells

Jianfa Li; Chengle Zhuang; Yuchen Liu; Mingwei Chen; Qing Zhou; Zhicong Chen; Anbang He; Guoping Zhao; Yinglu Guo; Hanwei Wu; Zhiming Cai; Weiren Huang

Recent reports show that long non-coding RNAs (lncRNAs) are emerging as significant functional regulators in the development of tumors, including bladder cancer. Here, we found that CCAT2 was upregulated in bladder cancer tissues and cell lines. Through the statistical analyses, we also found that the high expression level of CCAT2 was positively correlated with histological grade and TNM stage of bladder cancer. Further experimental results revealed that knockdown of CCAT2 could decrease cell proliferation and migration as well as induce apoptosis in bladder cancer cells. Besides, using the post-transcriptional device of synthetic biology, we create the tetracycline-inducible double small hairpin RNAs (shRNAs) vector to control the expression level of CCAT2 which was induced by doxycycline in a dosage-dependent manner. In summary, our data indicated that CCAT2 may be an oncogene and a therapeutic target in bladder cancer. The expression of CCAT2 can be quantitatively controlled by the synthetic “tetracycline-on” switch system in bladder cancer in response to different concentrations of doxycycline to inhibit the development of bladder cancer cells.


Journal of Experimental & Clinical Cancer Research | 2016

Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer

Jianfa Li; Chengle Zhuang; Yuchen Liu; Mingwei Chen; Yincong Chen; Zhicong Chen; Anbang He; Junhao Lin; Yonghao Zhan; Li Liu; Wen Xu; Guoping Zhao; Yinglu Guo; Hanwei Wu; Zhiming Cai; Weiren Huang

BackgroundLong non-coding RNAs (lncRNAs) have been proved to act as key molecules in cancer development and progression. Dysregulation of lncRNAs is discovered in various tumor tissues and cancer cells where they can serve as oncogenes or tumor suppressors. Long non-coding RNA HOXD-AS (HOXD cluster antisense RNA 1) has recently been identified to be involved in the development of several cancers including neuroblastoma, adenocarcinomas and breast cancer. However, the role of HOXD-AS1 in bladder cancer remains unknown.MethodsThe synthetic tetracycline-controllable shRNA was used to modulate the level of HOXD-AS1 by adding different concentrations of doxycycline (dox). RT-qPCR was used to detect the expression level of HOXD-AS1. Cell proliferation was determined by CCK-8 assay and EdU incorporation experiment when HOXD-AS1 was knocked down. We used wound-healing assay for detecting the effect of HOXD-AS1 on cell migration. Eventually, cell apoptosis was determined by caspase 3 ELISA assay and flow cytometry assay.ResultsIn this study, we found that the expression level of HOXD-AS1 was significantly increased in bladder cancer tissues and cells. Furthermore, high expression of HOXD-AS1 was significantly related to tumor size, histological grade and TNM stage. In vitro assays confirmed that knockdown of HOXD-AS1 suppressed cell proliferation/migration and increased the rate of apoptotic cell in bladder cancer cells. At last, we used the important element of synthetic biology, tetracycline(tet)-controllable switch, to construct tet-controllable shRNA vectors which can modulate the expression of HOXD-AS1 in a dosage-dependent manner.ConclusionsOur research suggested that high expression of HOXD-AS1 may be involved in the bladder cancer carcinogenesis through inhibiting the phenotypes and activating endogenous cancer-related molecular pathways. Therefore, HOXD-AS1 may act as an oncogene and provide a potential attractive therapeutic target for bladder cancer. In addition, the synthetic tetracycline-controllable shRNA may provide a novel method for cancer research in vitro assays.


Journal of Experimental & Clinical Cancer Research | 2016

Up-regulation of long non-coding RNA PANDAR is associated with poor prognosis and promotes tumorigenesis in bladder cancer.

Yonghao Zhan; Junhao Lin; Yuchen Liu; Mingwei Chen; Xiaoying Chen; Chengle Zhuang; Li Liu; Wen Xu; Zhicong Chen; Anbang He; Qiaoxia Zhang; Xiaojuan Sun; Guoping Zhao; Weiren Huang

BackgroundLong non-coding RNAs (lncRNAs) have emerged as biomarkers and important regulators of tumor development and progression. PANDAR (promoter of CDKN1A antisense DNA damage activated RNA) is a novel long non-coding RNA that acts as a potential biomarker and involves in development of multiple cancers. However, the clinical significance and molecular mechanism of PANDAR in bladder cancer is still unknown. In this study, we aimed to figure out the role of PANDAR in bladder cancer.MethodsThe relative expression level of lncRNA PANDAR was determined by Real-Time qPCR in a total of 55 patients with urothelial bladder cancer and in different bladder cancer cell lines. We inhibited PANDAR expression by transfecting PANDAR specific siRNA and enhanced PANDAR expression by transfecting a PANDAR expression vector (pcDNA3.1-PANDAR). Cell proliferation was determined by using both CCK-8 assay and Edu assay. Cell apoptosis was determined by using ELISA assay, Hoechst 33342 staining and Flow cytometry. Cell migration was determined by using transwell assay. All experimental data from three independent experiments were analyzed by χ2 test or Student’s t-test and results were expressed as mean ± standard deviation.ResultsWe found that PANDAR was significantly up-regulated in bladder cancer tissues compared with paired-adjacent nontumorous tissues in a cohort of 55 bladder cancer patients. Moreover, increased PANDAR expression was positively correlated with higher histological grade (P < 0.05) and advanced TNM stage (P < 0.05). Further experiments demonstrated that inhibited cell proliferation/migration and induced apoptosis by silencing PANDAR were also observed in bladder cancer cells. Furthermore, over expression of PANDAR in bladder cancer cells promoted the proliferation/migration and suppressed apoptosis.ConclusionsThese findings demonstrate that PANDAR plays oncogenic roles in bladder cancer and PANDAR may serve as a potential prognostic biomarker and therapeutic target of bladder cancer.


Journal of Experimental & Clinical Cancer Research | 2016

Over-expression of long noncoding RNA BANCR inhibits malignant phenotypes of human bladder cancer

Anbang He; Yuchen Liu; Zhicong Chen; Jianfa Li; Mingwei Chen; Li Liu; Xinhui Liao; Zhaojie Lv; Yonghao Zhan; Chengle Zhuang; Junhao Lin; Weiren Huang; Hongbing Mei

BackgroundAccumulating evidences indicated that lncRNAs play crucial regulatory roles in oncogenesis and progression of cancers. BRAF activated non-coding RNA (BANCR) has been identified to contribute to the progression of some human cancers. However, the relationship between BANCR and bladder cancer (BC) is largely unclear.MethodsBANCR expression levels in BC, paired non-cancer tissues and BC cell lines were detected by real-time quantitative RT-PCR (qRT-PCR). The relationships between BANCR expression levels and the clinical characteristics were evaluated. BANCR expression was enhanced by transfecting a pcDNA-BANCR vector. We used both CCK-8 assay and Edu assay to detect cell proliferation. We also detect cell apoptosis and migration by using ELISA assay, Flow cytometry and transwell assay, respectively. All statistical analyses were executed by using the SPSS 20.0 software.ResultsBANCR expression levels were remarkably decreased in BC tissues compared with adjacent noncancerous tissues. BANCR expression levels in two BC cell lines were also significantly down-regulated. Clinicopathologic analysis revealed that low BANCR expression was positively correlated with TNM stage, but not associated with other clinicopathological characteristics. BANCR has been successfully overexpressed in BC cell lines (T24 and SW780) by transfecting a pcDNA-BANCR vector. Cell proliferation inhibition, apoptosis induction and migration suppression were also observed in pCDNA-BANCR-transfected T24 and SW780 cells.ConclusionsThese data suggested that BANCR represents a tumor suppressor player in bladder cancer, contributes to tumor proliferation, apoptosis and migration, and may serve as a new candidate biomarker and a potential therapeutic target for patients with BC.


Oncotarget | 2017

Role of long noncoding RNA UCA1 as a common molecular marker for lymph node metastasis and prognosis in various cancers: a meta-analysis

Anbang He; Rong Hu; Zhicong Chen; Xinhui Liao; Jianfa Li; Dailian Wang; Zhaojie Lv; Yuchen Liu; Feng Wang; Hongbing Mei

Accumulating evidences indicated that UCA1 expression was up-regulated in various cancers, and high UCA1 expression was correlated with metastasis and prognosis. This meta-analysis collected all eligible studies and explored the relationships between UCA1 expression and lymph node metastasis (LNM) or overall survival (OS). Literature collection was performed by using electronic databases PubMed, Cochrane Library, and Web of Science (up to June 13, 2016). According to the inclusion and exclusion criteria, twelve studies were included in the meta-analysis. The result showed that high UCA1 expression was correlated with more LNM (OR=2.50, 95 %CI: 1.58-3.96, p<0.0001) in a random-effects model (I2=45 %, p=0.08) and could predict poor OS in cancer patients, with pooled hazard ratio (HR) of 1.65 [95% confidence interval (CI) 1.44-1.88, p<0.00001] indicated by a fixed-effects model (I2=35%, p=0.11). In conclusion, the present meta-analysis demonstrated that high expression of UCA1 might serve as a common molecular marker for predicting lymph node metastasis and prognosis in various cancers.


Journal of Cancer | 2017

LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells

Haibiao Xie; Xinhui Liao; Zhicong Chen; Yuan Fang; Anbang He; Yucheng Zhong; Qunjun Gao; Huizhong Xiao; Jianfa Li; Weiren Huang; Yuchen Liu

Accumulating evidences suggest that longnon-coding RNAs (lncRNAs) play functional roles in development of different cancers, including cancer initiation and progression. Metastasis associated lung adenocarcinoma transcript 1(MALAT1) is a well-known lncRNA which was previously shown to be a direct target of miR-125b in bladder cancer (BCa) and to promote cancer progression and invasion. However, little is known whether MALAT1 can also target miR-125b. In the present study, using CRISPR-based technologies and qRT-PCR, we show that MALAT1 is capable of suppressing mature miR-125b and increasing the expression of its target genes (Bcl-2 and MMP-13), but has no effect on pri-miR-125b and pre-miR-125b. We observe that the biotin-labeled MALAT1-RNA probe is able to pull down Ago2 and miR-125b and that the negative regulation of miR-125b by MALAT1 is dependent on Ago2. Importantly, the results of flow cytometry assay and transwell assay reveal that the MALAT1-mediated cancer progression is in part due to specific suppression of miR-125b and activation of its two target genes. All together, these data suggest that the “MALAT1-miR-125b-Bcl-2 / MMP-13” axis plays an important role in the progression of BCa, thereby may provide a potential therapeutic strategy for the treatment of human BCa.


Oncotarget | 2017

Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2

Yonghao Zhan; Yifan Li; Bao Guan; Zicheng Wang; Ding Peng; Zhicong Chen; Anbang He; Shiming He; Yanqing Gong; Xuesong Li; Liqun Zhou

Emerging evidences have indicated that long non-coding RNAs (lncRNAs) are pivotal regulators of tumor development and progression. HNF1A-AS1 (HNF1A antisense RNA 1, C12 or f27) is a novel long non-coding RNA that acts as a potential biomarker and is involved in development and progression of several cancers. Nevertheless, we know nothing about the clinical significance and molecular mechanism of HNF1A-AS1 in bladder cancer. In this study, we found that HNF1A-AS1 is significantly up-regulated in bladder cancer. Further experiments had demonstrated that silencing HNF1A-AS1 in bladder cancer cells could inhibit the proliferation and induce apoptosis. Mechanistically, we found down-regulated of HNF1A-AS1 increased the expression of miR-30b-5p and subsequently inhibited the expression of Bcl-2, in a ceRNA-dependent way. Moreover, knockdown of miR-30b-5p reversed cell proliferation inhibition and cell apoptosis induced by silencing HNF1A-AS1. In conclusions, we demonstrated that HNF1A-AS1 plays an important regulatory role in bladder cancer and shed new light on lncRNA-directed diagnostic and therapeutics in bladder cancer.


Oncotarget | 2017

Increased expression of ZEB1-AS1 correlates with higher histopathological grade and promotes tumorigenesis in bladder cancer

Junhao Lin; Yonghao Zhan; Yuchen Liu; Zhicong Chen; Jianbo Liang; Wei Li; Anbang He; Liqun Zhou; Hongbin Mei; Feng Wang; Weiren Huang

Bladder cancer is one of the most common urinary cancers worldwide. Emerging studies indicated that long non-coding RNAs (lncRNAs) play crucial roles in cancer biology. In this study, we found that a novel lncRNA Zinc finger E-box-binding homeebox1 (ZEB1) antisense RNA (ZEB1-AS1) was overexpressed in bladder cancer tissues compared to paired noncancerous tissues. Moreover, the expression of ZEB1-AS1 was positive correlated with higher histological grade and TNM stage in bladder cancer. Furthermore, Loss-of-function experiments showed that down-regulation of ZEB1-AS1 not only can suppress cell growth but also can inhibit migration and induce apoptosis in bladder cancer cell lines 5637 and SW780. In conclusion, these findings indicated that ZEB1-AS1 plays regulatory roles in bladder cancer and it may become a novel molecular biomarker of prognosis and therapy in bladder cancer.


Cancer Biomarkers | 2016

Decreased expression of LncRNA MIR31HG in human bladder cancer

Anbang He; Zhicong Chen; Hongbing Mei; Yuchen Liu

OBJECTIVE In this study, we examined the relationships between the expression level of long non-coding RNA MIR31HG in bladder cancer and the clinical characteristics. METHODS A total of 55 tissue samples from patients with bladder cancer were collected, and the lncRNA MIR31HG levels in cancer, paired non-cancer tissues and BC cell lines were detected by real-time quantitative RT-PCR (qRT-PCR). The relationships between MIR31HG level and the clinical characteristics were evaluated. RESULTS MIR31HG expression was remarkably decreased in bladder cancer tissues compared with adjacent noncancerous tissues (P < 0.05). MIR31HG expression was also significantly down-regulated in four bladder cancer cell lines (P < 0.001). Clinicopathologic analysis revealed that MIR31HG expression was negatively associated with TNM stage (P = 0.010), but not with other clinicopathological characteristics. CONCLUSIONS These findings revealed that MIR31HG may function as a cancer-suppressor gene to participate in the bladder cancer carcinogenesis and development.


Tumor Biology | 2017

SPRY4-IT1: A novel oncogenic long non-coding RNA in human cancers:

Jianfa Li; Yincong Chen; Zhicong Chen; Anbang He; Haibiao Xie; Qiaoxiao Zhang; Zhiming Cai; Yuchen Liu; Weiren Huang

Long non-coding RNAs are classified as a kind of RNA, which are longer than 200 nucleotides in length and cannot be translated into proteins. Multiple studies have demonstrated that long non-coding RNAs are involved in various cellular processes, including proliferation, differentiation, cell death, and metastasis. Among numerous long non-coding RNAs, we focus on Sprouty4-Intron 1 (SPRY4-IT1), a well-known long non-coding RNA that is overexpressed in various kinds of tumor tissues and cell lines. Accumulating evidences show that SPRY4-IT1 was dysregulated in various cancers, including melanoma, breast cancer, esophageal squamous cell carcinoma, non–small cell lung cancer, gastric cancer, colon cancer, and hepatocellular carcinoma, and amplification of SPRY4-IT1 was associated with different clinicopathological features of cancer patients. Importantly, SPRY4-IT1 exerts important roles in tumor progression and metastasis. However, detailed molecular mechanisms of SPRY4-IT1 in cancer progression and metastasis were poorly understood. In this review, we have focused on the characteristics of SPRY4-IT1 and illustrated the biological function and mechanism of SPRY4-IT1 in cancer development.

Collaboration


Dive into the Anbang He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge