Anca M. Segall
San Diego State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anca M. Segall.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Mya Breitbart; Peter Salamon; Bjarne Andresen; Joseph M. Mahaffy; Anca M. Segall; David Mead; Farooq Azam; Forest Rohwer
Viruses are the most common biological entities in the oceans by an order of magnitude. However, very little is known about their diversity. Here we report a genomic analysis of two uncultured marine viral communities. Over 65% of the sequences were not significantly similar to previously reported sequences, suggesting that much of the diversity is previously uncharacterized. The most common significant hits among the known sequences were to viruses. The viral hits included sequences from all of the major families of dsDNA tailed phages, as well as some algal viruses. Several independent mathematical models based on the observed number of contigs predicted that the most abundant viral genome comprised 2–3% of the total population in both communities, which was estimated to contain between 374 and 7,114 viral types. Overall, diversity of the viral communities was extremely high. The results also showed that it would be possible to sequence the entire genome of an uncultured marine viral community.
PLOS Pathogens | 2014
Scott M. Robinson; Ginger Tsueng; Jon Sin; Vrushali Mangale; Shahad Rahawi; Laura L. McIntyre; Wesley Williams; Nelson Kha; Casey Cruz; Bryan M. Hancock; David P. Nguyen; M. Richard Sayen; Brett J. Hilton; Kelly S. Doran; Anca M. Segall; Roland Wolkowicz; Christopher T. Cornell; J. Lindsay Whitton; Roberta A. Gottlieb; Ralph Feuer
Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host.
Comparative Biochemistry and Physiology B | 2002
John H. Paul; Matthew B. Sullivan; Anca M. Segall; Forest Rohwer
Marine phages are the most abundant biological entities in the oceans. They play important roles in carbon cycling through marine food webs, gene transfer by transduction and conversion of hosts by lysogeny. The handful of marine phage genomes that have been sequenced to date, along with prophages in marine bacterial genomes, and partial sequencing of uncultivated phages are yielding glimpses of the tremendous diversity and physiological potential of the marine phage community. Common gene modules in diverse phages are providing the information necessary to make evolutionary comparisons. Finally, deciphering phage genomes is providing clues about the adaptive response of phages and their hosts to environmental cues.
Antimicrobial Agents and Chemotherapy | 2017
Robert T. Schooley; Biswajit Biswas; Jason J. Gill; Adriana Hernandez-Morales; Jacob C. Lancaster; Lauren E. Lessor; Jeremy J. Barr; Sharon L. Reed; Forest Rohwer; Sean Benler; Anca M. Segall; Randy Taplitz; Davey M. Smith; Kim M. Kerr; Monika Kumaraswamy; Victor Nizet; Leo Lin; Melanie McCauley; Steffanie A. Strathdee; Constance A. Benson; Robert K. Pope; Brian M. Leroux; Andrew C. Picel; Alfred Mateczun; Katherine E. Cilwa; James M. Regeimbal; Luis A. Estrella; David M. Wolfe; Matthew Henry; Javier Quinones
ABSTRACT Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii. We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patients downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.
Journal of Bacteriology | 2003
Victor Seguritan; I-Wei Feng; Forest Rohwer; Mark Swift; Anca M. Segall
Two bacteriophages of an environmental isolate of Vibrio parahaemolyticus were isolated and sequenced. The VP16T and VP16C phages were separated from a mixed lysate based on plaque morphology and exhibit 73 to 88% sequence identity over about 80% of their genomes. Only about 25% of their predicted open reading frames are similar to genes with known functions in the GenBank database. Both phages have cos sites and open reading frames encoding proteins closely related to coliphage lambdas terminase protein (the large subunit). Like in coliphage lambda and other siphophages, a large operon in each phage appears to encode proteins involved in DNA packaging and capsid assembly and presumably in host lysis; we refer to this as the structural operon. In addition, both phages have open reading frames closely related to genes encoding DNA polymerase and helicase proteins. Both phages also encode several putative transcription regulators, an apparent polypeptide deformylase, and a protein related to a virulence-associated protein, VapE, of Dichelobacter nodosus. Despite the similarity of the proteins and genome organization, each of the phages also encodes a few proteins not encoded by the other. We did not identify genes closely related to genes encoding integrase proteins belonging to either the tyrosine or serine recombinase family, and we have no evidence so far that these phages can lysogenize the V. parahaemolyticus strain 16 host. Surprisingly for active lytic viruses, the two phages have a codon usage that is very different than that of the host, suggesting the possibility that they may be relative newcomers to growth in V. parahaemolyticus. The DNA sequences should allow us to characterize the lifestyles of VP16T and VP16C and the interactions between these phages and their host at the molecular level, as well as their relationships to other marine and nonmarine phages.
Molecular Microbiology | 2006
Carl W. Gunderson; Anca M. Segall
Holliday junction intermediates arise in several central pathways of DNA repair, replication fork restart, and site‐specific recombination catalysed by tyrosine recombinases. Previously identified hexapeptide inhibitors of phage lambda integrase‐mediated recombination block the resolution of Holliday junction intermediates in vitro and thereby inhibit recombination, but have no DNA cleavage activity themselves. The most potent peptides are specific for the branched DNA structure itself, as opposed to the integrase complex. Based on this activity, the peptides inhibit several unrelated Holliday junction‐processing enzymes in vitro, including the RecG helicase and RuvABC junction resolvase complex. We have found that some of these hexapeptides are potent bactericidal antimicrobials, effective against both Gm+ and Gm– bacteria. Using epifluorescence microscopy and flow cytometry, we have characterized extensively the physiology of bacterial cells treated with these peptides. The hexapeptides cause DNA segregation abnormalities, filamentation and DNA damage. Damage caused by the peptides induces the SOS response, and is synergistic with damage caused by UV and mitomycin C. Our results are consistent with the model that the hexapeptides affect DNA targets that arise during recombination‐dependent repair. We propose that the peptides trap intermediates in the repair of collapsed replication forks, preventing repair and resulting in bacterial death. Inhibition of DNA repair constitutes a novel target of antibiotic therapy. The peptides affect targets that arise in multiple pathways, and as expected, are quite resistant to the development of spontaneous antibiotic resistance.
Molecular Microbiology | 2009
David F. Fujimoto; Robin H. Higginbotham; Kristen M. Sterba; Soheila J. Maleki; Anca M. Segall; Mark S. Smeltzer; Barry K. Hurlburt
Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50 000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (λ) attachment site, attL, producing SarA‐DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, Escherichia coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of λ excisionase, a DNA binding accessory protein. Taken together, these data suggest that SarA may function as an architectural accessory protein.
Journal of Virology | 2008
Jennifer Mobberley; R. Nathan Authement; Anca M. Segall; John H. Paul
ABSTRACT A myovirus-like temperate phage, ΦHAP-1, was induced with mitomycin C from a Halomonas aquamarina strain isolated from surface waters in the Gulf of Mexico. The induced cultures produced significantly more virus-like particles (VLPs) (3.73 × 1010 VLP ml−1) than control cultures (3.83 × 107 VLP ml−1) when observed with epifluorescence microscopy. The induced phage was sequenced by using linker-amplified shotgun libraries and contained a genome 39,245 nucleotides in length with a G+C content of 59%. The ΦHAP-1 genome contained 46 putative open reading frames (ORFs), with 76% sharing significant similarity (E value of <10−3) at the protein level with other sequences in GenBank. Putative functional gene assignments included small and large terminase subunits, capsid and tail genes, an N6-DNA adenine methyltransferase, and lysogeny-related genes. Although no integrase was found, the ΦHAP-1 genome contained ORFs similar to protelomerase and parA genes found in linear plasmid-like phages with telomeric ends. Southern probing and PCR analysis of host genomic, plasmid, and ΦHAP-1 DNA indicated a lack of integration of the prophage with the host chromosome and a difference in genome arrangement between the prophage and virion forms. The linear plasmid prophage form of ΦHAP-1 begins with the protelomerase gene, presumably due to the activity of the protelomerase, while the induced phage particle has a circularly permuted genome that begins with the terminase genes. The ΦHAP-1 genome shares synteny and gene similarity with coliphage N15 and vibriophages VP882 and VHML, suggesting an evolutionary heritage from an N15-like linear plasmid prophage ancestor.
Molecular Microbiology | 2004
Nathalie Garcia‐Russell; Timothy G. Harmon; Tien Q. Le; Nelusha H. Amaladas; Richard D. Mathewson; Anca M. Segall
We have investigated the fluidity of the Salmonella chromosome architecture using the phage lambda site‐specific recombination system as a probe. We determined how chromosome position affects the extent of integrase‐mediated recombination between pairs of inversely oriented att sites at various loci. We also investigated the accessibility of each chromosomal att site to an extrachromosomal partner carried on a low‐copy plasmid. Recombination events were assayed by semi‐quantitative polymerase chain reaction of the attP product. The extent of recombination between the chromosome and the plasmid was generally higher than intrachromosomal recombination except for two loci, araA::attL and galT::attL, which gave no detectable recombination with any other locus. Based on 20 intervals, we found that chromosomal locations are not equally accessible to each other. Although multiple factors probably affect accessibility, the most important is the specific combination of the end‐points used. Neither the size of the intervals nor the accessibility of individual end‐points to extrachromosomal sequences is as important. These results suggest that the chromosome is not completely fluid but rather organized in some way, with barriers that limit the movement of DNA within the cell. The nature of the barriers involved in chromosomal organization remains to be determined.
Proteins | 2014
Andriy Kryshtafovych; John Moult; Patrick M. Bales; J. Fernando Bazan; Marco Biasini; Alex B. Burgin; Chen Chen; Frank V. Cochran; Timothy K. Craig; Rhiju Das; Deborah Fass; Carmela Garcia-Doval; Osnat Herzberg; Donald D. Lorimer; Hartmut Luecke; Xiaolei Ma; Daniel C. Nelson; Mark J. van Raaij; Forest Rohwer; Anca M. Segall; Victor Seguritan; Kornelius Zeth; Torsten Schwede
For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this article, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid‐gated urea channel, a difficult to predict transmembrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin (IL)−34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fiber protein gene product 17 from bacteriophage T7; the bacteriophage CBA‐120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally, an unprecedented class of structure prediction targets based on engineered disulfide‐rich small proteins. Proteins 2014; 82(Suppl 2):26–42.