Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Ahlén is active.

Publication


Featured researches published by Anders Ahlén.


vehicular technology conference | 2003

Attaining both coverage and high spectral efficiency with adaptive OFDM downlinks

Mikael Sternad; Tony Ottosson; Anders Ahlén; Arne Svensson

A downlink radio interface is proposed for cellular packet data systems with wide area coverage and high spectral efficiency. A slotted OFDM radio interface is used, in which time-frequency bins are allocated adaptively to different users within a downlink beam, based on their channel quality. Fading channels generated by vehicular 100 km/h users may be accommodated. Frequency division duplex (FDD) is assumed, which requires channel prediction in the terminals and feedback of that information to a packet scheduler at the base station. To attain both high spectral efficiency and good coverage within sectors/beams, a scheme based on coordinated scheduling between sectors of the same site, and the employment of frequency reuse factor above 1 only in outer parts of the sector, is proposed and evaluated. The resulting sector throughput increases with the number of active users. When terminals have one antenna and channels are Rayleigh fading, it results in a sector payload capacity between 1.2 (one user) and 2.1 bits/s/Hz/sector (for 30 users) in an interference-limited environment.


Proceedings of the IEEE | 2007

Towards Systems Beyond 3G Based on Adaptive OFDMA Transmission

Mikael Sternad; Tommy Svensson; Tony Ottosson; Anders Ahlén; Arne Svensson; Anna Brunstrom

High data rates, high spectral efficiency, flexibility, and low delays over the air interface will be important features in next-generation wireless systems. The overall challenge will be packet scheduling and adaptive radio transmission for multiple users, via multiple antennas and over frequency-selective wideband channels. This problem needs to be structured to obtain feasible solutions. The basic simplifying assumptions used here are clustering of antennas into cells, orthogonal transmission by use of cyclic-prefix orthogonal frequency-division multiplexing (OFDM) and a time-scale separation view of the total link adaptation, scheduling and intercell coordination problem. Based on these assumptions, we survey techniques that adapt the transmission to the temporal, frequency, and spatial channel properties. We provide a systematic overview of the design problems, such as the dimensioning of the allocated time-frequency resources, the influence of duplexing schemes, adaptation control issues for downlinks and uplinks, timing issues, and their relation to the required performance of channel predictors. Specific design choices are illustrated by recent research within the Swedish Wireless IP program and the EU IST-WINNER project. The presented results indicate that high-performance adaptive OFDM transmission systems are indeed feasible, also for challenging scenarios that involve vehicular velocities, high carrier frequencies, and high bandwidths.


Automatica | 2012

On Kalman filtering over fading wireless channels with controlled transmission powers

Daniel E. Quevedo; Anders Ahlén; Alex S. Leong; Subhrakanti Dey

We study stochastic stability of centralized Kalman filtering for linear time-varying systems equipped with wireless sensors. Transmission is over fading channels where variable channel gains are counteracted by power control to alleviate the effects of packet drops. We establish sufficient conditions for the expected value of the Kalman filter covariance matrix to be exponentially bounded in norm. The conditions obtained are then used to formulate stabilizing power control policies which minimize the total sensor power budget. In deriving the optimal power control laws, both statistical channel information and full channel information are considered. The effect of system instability on the power budget is also investigated for both these cases.


IEEE Transactions on Control Systems and Technology | 1996

Dynamic transfer among alternative controllers and its relation to antiwindup controller design

Stefan F. Graebe; Anders Ahlén

Advanced control strategies and modern consulting provide new challenges for the classical problem of bumpless transfer. It can, for example, be necessary to transfer between an only approximately known existing analog controller and a new digital or adaptive controller without accessing any states. Transfer ought to be bidirectional and not presuppose steady state, so that an immediate back-transfer is possible if the new controller should drive the plant unstable. We present a scheme that meets these requirements. By casting the problem of bidirectional transfer into an associated tracking control problem, systematic analysis and design procedures from control theory can be applied. The associated control problem also has a correspondence to the design of antiwindup controllers. The paper includes laboratory and industrial applications.


vehicular technology conference | 2003

Impact of multiuser diversity and channel variability on adaptive OFDM

Wei Wang; Tony Ottosson; Mikael Sternad; Anders Ahlén; Arne Svensson

A downlink radio interface for cellular packet data systems with wide area coverage and high spectral efficiency is evaluated. A slotted OFDM radio interface is used, in which time-frequency bins are allocated adaptively to different mobile users within a downlink beam, or sector, based on their channel quality. Frequency division duplex (FDD) is assumed, which requires channel prediction in the terminals and feedback of this information to a packet scheduler. The adaptive modulation scheme is optimized by a novel approach which maximizes the throughput, including also the ARQ part of the transmission. A theoretical evaluation of the resulting multiuser diversity under some idealized assumptions shows that the spectral efficiency increases significantly with the number of active users. The simulations indicate that the loss of performance due to channel variability within the bins for vehicular users in frequency-selective fading environments is rather small.


IEEE Transactions on Signal Processing | 2010

Energy Efficient State Estimation With Wireless Sensors Through the Use of Predictive Power Control and Coding

Daniel E. Quevedo; Anders Ahlén; Jan Østergaard

We study state estimation via wireless sensors over fading channels. Packet loss probabilities depend upon time-varying channel gains, packet lengths and transmission power levels of the sensors. Measurements are coded into packets by using either independent coding or distributed zero-error coding. At the gateway, a time-varying Kalman filter uses the received packets to provide the state estimates. To trade sensor energy expenditure for state estimation accuracy, we develop a predictive control algorithm which, in an online fashion, determines the transmission power levels and codebooks to be used by the sensors. To further conserve sensor energy, the controller is located at the gateway and sends coarsely quantized power increment commands, only whenever deemed necessary. Simulations based on real channel measurements illustrate that the proposed method gives excellent results.


IEEE Transactions on Signal Processing | 1991

Wiener filter design using polynomial equations

Anders Ahlén; Mikael Sternad

A simplified way of deriving realizable and explicit Wiener filters is presented. Discrete-time problems are discussed in a polynomial equation framework. Optimal filters, predictors, and smoothers are calculated by means of spectral factorizations and linear polynomial equations. A tool for obtaining these equations, for a given problem structure, is described. It is based on the evaluation of orthogonality in the frequency domain, by means of canceling stable poles with zeros. Comparisons are made to previously known derivation methodologies such as completing the squares for the polynomial systems approach and the classical Wiener solution. The simplicity of the proposed derivation method is particularly evident in multistage filtering problems. To illustrate, two examples are discussed: a filtering and a generalized deconvolution problem. A new solvability condition for linear polynomial equation appearing in scalar problems is also presented. >


IEEE Transactions on Communications | 2002

Tracking of time-varying mobile radio channels. II. A case study

Lars Lindbom; Anders Ahlén; Mikael Sternad; D. Magnus Falkenström

For pt.I see ibid., vol.49, p.2207-17 (2001). Low-complexity Wiener LMS (WLMS) adaptation algorithms, of use for channel estimation, have been derived in Lindbom et al. (2001). They are here evaluated on the fast fading radio channels encountered in IS-136 TDMA systems, with the aim of clarifying several issues: How much can channel estimation performance be improved with these tools, as compared to LMS adaptation? When can an improved tracking MSE be expected to result in a meaningful reduction of the bit error rate? Will optimal prediction of future channel estimates significantly improve the equalization? Can one single tracker with fixed gain be used for all encountered Doppler frequencies and SNRs, or must a more elaborate scheme be adopted? These questions are here investigated both analytically and by simulation. An exact analytical expression for the tracking MSE on two-tap FIR channels is presented and utilized. With this tool, the MSE performance and robustness of WLMS algorithms based on different statistical models can be investigated. A simulation study then compares the uncoded bit error rate of detectors, where channel trackers are used in decision directed mode in conjunction with Viterbi algorithms. A Viterbi detector combined with WLMS, based on second order autoregressive fading models possibly combined with integration, provides good performance and robustness at a reasonable complexity.


IEEE Transactions on Automatic Control | 2013

State Estimation Over Sensor Networks With Correlated Wireless Fading Channels

Daniel E. Quevedo; Anders Ahlén; Karl Henrik Johansson

Stochastic stability for centralized time-varying Kalman filtering over a wireless sensor network with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly aggregated with measurements from several nodes, may be dropped because of fading links. To study this situation, we introduce a network state process, which describes a finite set of configurations of the radio environment. The network state characterizes the channel gain distributions of the links, which are allowed to be correlated between each other. Temporal correlations of channel gains are modeled by allowing the network state process to form a (semi-)Markov chain. We establish sufficient conditions that ensure the Kalman filter to be exponentially bounded. In the one-sensor case, this new stability condition is shown to include previous results obtained in the literature as special cases. The results also hold when using power and bit-rate control policies, where the transmission power and bit-rate of each node are nonlinear mapping of the network state and channel gains.


IEEE Transactions on Communications | 1999

Reuse within a cell-interference rejection or multiuser detection?

Claes Tidestav; Mikael Sternad; Anders Ahlén

We investigate the use of an antenna array at the receiver in frequency-division multiple-access/time-division multiple-access systems to let several users share one communication channel within a cell. A decision-feedback equalizer (DFE) which simultaneously detects all incoming signals is compared to a set of DFEs, each detecting one signal and rejecting the remaining as interference. We also introduce the existence of a zero-forcing solution to the equalization problem as an indicator of near-far resistance of different detector structures. Near-far resistance guarantees good performance if the noise level is low. Simulations show that with an increased number of users in the cell, the incremental performance degradation is small for the multiuser detector. We have also applied the proposed algorithms to experimental measurements from a DCS-1800 antenna array testbed. The results from these confirm that reuse within a cell is indeed possible using either an eight-element array antenna or a two-branch diversity sector antenna. Multiuser detection will, in general, provide better performance than interference rejection, especially when the power levels of the users differ substantially. The difference in performance is of crucial importance when the available training sequences are short.

Collaboration


Dive into the Anders Ahlén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Svensson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tony Ottosson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Henrik Johansson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge