Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Albrechtsen is active.

Publication


Featured researches published by Anders Albrechtsen.


Nature Reviews Genetics | 2011

Genotype and SNP calling from next-generation sequencing data

Rasmus Nielsen; Joshua S. Paul; Anders Albrechtsen; Yun S. Song

Meaningful analysis of next-generation sequencing (NGS) data, which are produced extensively by genetics and genomics studies, relies crucially on the accurate calling of SNPs and genotypes. Recently developed statistical methods both improve and quantify the considerable uncertainty associated with genotype calling, and will especially benefit the growing number of studies using low- to medium-coverage data. We review these methods and provide a guide for their use in NGS studies.


Nature | 2010

Ancient human genome sequence of an extinct Palaeo-Eskimo

Morten Rasmussen; Yingrui Li; Stinus Lindgreen; Jakob Skou Pedersen; Anders Albrechtsen; Ida Moltke; Mait Metspalu; Ene Metspalu; Toomas Kivisild; Ramneek Gupta; Marcelo Bertalan; Kasper Nielsen; M. Thomas P. Gilbert; Yong Wang; Maanasa Raghavan; Paula F. Campos; Hanne Munkholm Kamp; Andrew S. Wilson; Andrew Gledhill; Silvana R. Tridico; Michael Bunce; Eline D. Lorenzen; Jonas Binladen; Xiaosen Guo; Jing Zhao; Xiuqing Zhang; Hao Zhang; Zhuo Li; Minfeng Chen; Ludovic Orlando

We report here the genome sequence of an ancient human. Obtained from ∼4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20×, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.


Diabetes | 2008

Low Physical Activity Accentuates the Effect of the FTO rs9939609 Polymorphism on Body Fat Accumulation

Camilla H. Andreasen; Kirstine L. Stender-Petersen; Mette Sloth Mogensen; Signe S. Torekov; Lise Wegner; Gitte Andersen; Arne L. Nielsen; Anders Albrechtsen; Knut Borch-Johnsen; Signe S. Rasmussen; Jesper O. Clausen; Annelli Sandbæk; Torsten Lauritzen; Lars Hestbjerg Hansen; Torben Jørgensen; Oluf Pedersen; Torben Hansen

OBJECTIVE—Three independent studies have shown that variation in the fat mass and obesity-associated (FTO) gene associates with BMI and obesity. In the present study, the effect of FTO variation on metabolic traits including obesity, type 2 diabetes, and related quantitative phenotypes was examined. RESEARCH DESIGN AND METHODS—The FTO rs9939609 polymorphism was genotyped in a total of 17,508 Danes from five different study groups. RESULTS—In studies of 3,856 type 2 diabetic case subjects and 4,861 normal glucose-tolerant control subjects, the minor A-allele of rs9939609 associated with type 2 diabetes (odds ratio 1.13 [95% CI 1.06–1.20], P = 9 × 10−5). This association was abolished when adjusting for BMI (1.06 [0.97–1.16], P = 0.2). Among 17,162 middle-aged Danes, the A-allele associated with overweight (1.19 [1.13–1.24], P = 1 × 10−12) and obesity (1.27 [1.20–1.34], P = 2 × 10−16). Furthermore, obesity-related quantitative traits such as body weight, waist circumference, fat mass, and fasting serum leptin levels were significantly elevated in A-allele carriers. An interaction between the FTO rs9939609 genotype and physical activity (P = 0.007) was found, where physically inactive homozygous risk A-allele carriers had a 1.95 ± 0.3 kg/m2 increase in BMI compared with homozygous T-allele carriers. CONCLUSIONS—We validate that variation in FTO is associated with type 2 diabetes when not adjusted for BMI and with an overall increase in body fat mass. Furthermore, low physical activity seems to accentuate the effect of FTO rs9939609 on body fat accumulation.


Science | 2011

An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

Morten Rasmussen; Xiaosen Guo; Yong Wang; Kirk E. Lohmueller; Simon Rasmussen; Anders Albrechtsen; Line Skotte; Stinus Lindgreen; Mait Metspalu; Thibaut Jombart; Toomas Kivisild; Weiwei Zhai; Anders Eriksson; Andrea Manica; Ludovic Orlando; Francisco M. De La Vega; Silvana R. Tridico; Ene Metspalu; Kasper Nielsen; María C. Ávila-Arcos; J. Víctor Moreno-Mayar; Craig Muller; Joe Dortch; M. Thomas P. Gilbert; Ole Lund; Agata Wesolowska; Monika Karmin; Lucy A. Weinert; Bo Wang; Jun Li

Whole-genome data indicate that early modern humans expanded into Australia 62,000 to 75,000 years ago. We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.


Nature | 2013

Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

Ludovic Orlando; Aurélien Ginolhac; Guojie Zhang; Duane G. Froese; Anders Albrechtsen; Mathias Stiller; Mikkel Schubert; Enrico Cappellini; Bent Petersen; Ida Moltke; Philip L. F. Johnson; Matteo Fumagalli; Julia T. Vilstrup; Maanasa Raghavan; Thorfinn Sand Korneliussen; Anna-Sapfo Malaspinas; Josef Korbinian Vogt; Damian Szklarczyk; Christian D. Kelstrup; Jakob Vinther; Andrei Dolocan; Jesper Stenderup; Amhed M. V. Velazquez; James A. Cahill; Morten Rasmussen; Xiaoli Wang; Jiumeng Min; Grant D. Zazula; Andaine Seguin-Orlando; Cecilie Mortensen

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyr bp). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr bp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myr bp), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyr bp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.


Nature | 2014

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Maanasa Raghavan; Pontus Skoglund; Kelly E. Graf; Mait Metspalu; Anders Albrechtsen; Ida Moltke; Simon Rasmussen; Thomas W. Stafford; Ludovic Orlando; Ene Metspalu; Monika Karmin; Kristiina Tambets; Siiri Rootsi; Reedik Mägi; Paula F. Campos; Elena Balanovska; Oleg Balanovsky; Elza Khusnutdinova; Sergey Litvinov; Ludmila P. Osipova; Sardana A. Fedorova; M. I. Voevoda; Michael DeGiorgio; Thomas Sicheritz-Pontén; Søren Brunak; Svetlana Demeshchenko; Toomas Kivisild; Richard Villems; Rasmus Nielsen; Mattias Jakobsson

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


BMC Bioinformatics | 2014

ANGSD: Analysis of Next Generation Sequencing Data

Thorfinn Sand Korneliussen; Anders Albrechtsen; Rasmus Nielsen

BackgroundHigh-throughput DNA sequencing technologies are generating vast amounts of data. Fast, flexible and memory efficient implementations are needed in order to facilitate analyses of thousands of samples simultaneously.ResultsWe present a multithreaded program suite called ANGSD. This program can calculate various summary statistics, and perform association mapping and population genetic analyses utilizing the full information in next generation sequencing data by working directly on the raw sequencing data or by using genotype likelihoods.ConclusionsThe open source c/c++ program ANGSD is available at http://www.popgen.dk/angsd. The program is tested and validated on GNU/Linux systems. The program facilitates multiple input formats including BAM and imputed beagle genotype probability files. The program allow the user to choose between combinations of existing methods and can perform analysis that is not implemented elsewhere.


Nature Genetics | 2010

Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants

Yingrui Li; Nicolas Vinckenbosch; Geng Tian; Emilia Huerta-Sanchez; Tao Jiang; Hui Jiang; Anders Albrechtsen; Gitte Andersen; Hongzhi Cao; Thorfinn Sand Korneliussen; Niels Grarup; Yiran Guo; Ines Hellman; Xin Jin; Qibin Li; Jiangtao Liu; Xiao Liu; Thomas Sparsø; Meifang Tang; Honglong Wu; Renhua Wu; Chang Yu; Hancheng Zheng; Arne Astrup; Lars Bolund; Johan Holmkvist; Torben Jørgensen; Karsten Kristiansen; Ole Schmitz; Thue W. Schwartz

Targeted capture combined with massively parallel exome sequencing is a promising approach to identify genetic variants implicated in human traits. We report exome sequencing of 200 individuals from Denmark with targeted capture of 18,654 coding genes and sequence coverage of each individual exome at an average depth of 12-fold. On average, about 95% of the target regions were covered by at least one read. We identified 121,870 SNPs in the sample population, including 53,081 coding SNPs (cSNPs). Using a statistical method for SNP calling and an estimation of allelic frequencies based on our population data, we derived the allele frequency spectrum of cSNPs with a minor allele frequency greater than 0.02. We identified a 1.8-fold excess of deleterious, non-syonomyous cSNPs over synonymous cSNPs in the low-frequency range (minor allele frequencies between 2% and 5%). This excess was more pronounced for X-linked SNPs, suggesting that deleterious substitutions are primarily recessive.


Diabetes | 2007

Studies of association of variants near the HHEX, CDKN2A/B and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects – validation and extension of genome-wide association studies

Niels Grarup; Chrisian S. Rose; Ehm A. Andersson; Gitte Andersen; Arne L. Nielsen; Anders Albrechtsen; Jesper O. Clausen; Signe S. Rasmussen; Torben Jørgensen; Annelli Sandbæk; Torsten Lauritzen; Ole Schmitz; Torben Hansen; Oluf Pedersen

OBJECTIVE— In the present study, we aimed to validate the type 2 diabetes susceptibility alleles identified in six recent genome-wide association studies in the HHEX/KIF11/IDE (rs1111875), CDKN2A/B (rs10811661), and IGF2BP2 (rs4402960) loci, as well as the intergenic rs9300039 variant. Furthermore, we aimed to characterize quantitative metabolic risk phenotypes of the four variants. RESEARCH DESIGN AND METHODS— The variants were genotyped in the population-based Inter99 cohort (n = 5,970), the ADDITION Study (n = 1,626), a population-based sample of young healthy subjects (n = 377), and in additional type 2 diabetic case (n = 2,111) and glucose-tolerant (n = 521) subjects. The case-control studies involved a total of 4,089 type 2 diabetic patients and 5,043 glucose-tolerant control subjects. RESULTS— We validated association of variants near HHEX/KIF11/IDE, CDKN2A/B, and IGF2BP2 with type 2 diabetes. Interestingly, in middle-aged people, the rs1111875 C-allele of HHEX/KIF11/IDE strongly associated with lower acute insulin response during an oral glucose tolerance test (P = 6 × 10−7). In addition, decreased insulin release following intravenous tolbutamide injection was observed in young healthy subjects (P = 0.02). Also, a reduced insulin release was observed for the CDKN2A/B rs10811661 T-allele after both oral and intravenous glucose challenges (P = 0.001 and P = 0.009, respectively). CONCLUSIONS— We validate that variants in the proximity of the HHEX/KIF11/IDE, CDKN2A/B, and IFG2BP2 loci associate with type 2 diabetes. Importantly, variations within the HHEX/KIF11/IDE and CDKN2A/B loci confer impaired glucose- and tolbutamide-induced insulin release in middle-aged and young healthy subjects, suggesting a role for these variants in the pathogenesis of pancreatic β-cell dysfunction.


Nature | 2014

The genome of a Late Pleistocene human from a Clovis burial site in western Montana

Morten Rasmussen; Sarah L. Anzick; Michael R. Waters; Pontus Skoglund; Michael DeGiorgio; Thomas W. Stafford; Simon Rasmussen; Ida Moltke; Anders Albrechtsen; Shane M Doyle; G. David Poznik; Valborg Gudmundsdottir; Rachita Yadav; Anna-Sapfo Malaspinas; Samuel Stockton White; Morten E. Allentoft; Omar E. Cornejo; Kristiina Tambets; Anders Eriksson; Peter D. Heintzman; Monika Karmin; Thorfinn Sand Korneliussen; David J. Meltzer; Tracey Pierre; Jesper Stenderup; Lauri Saag; Vera Warmuth; Margarida Cabrita Lopes; Ripan S. Malhi; Søren Brunak

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 14C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 14C years bp (approximately 12,707–12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

Collaboration


Dive into the Anders Albrechtsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rasmus Nielsen

University of California

View shared research outputs
Top Co-Authors

Avatar

Oluf Pedersen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Ida Moltke

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Niels Grarup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Borch-Johnsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bjerregaard

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge