Anders Angerbjörn
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders Angerbjörn.
Oecologia | 2005
Fredrik Dalerum; Anders Angerbjörn
Assessments of temporal variation in diets are important for our understanding of the ecology of many vertebrates. Ratios of naturally occurring stable isotopes in animal tissues are a combination of the source elements and tissue specific fractionation processes, and can thus reveal dietary information. We review three different approaches that have been used to resolve temporal diet variation through analysis of stable isotopes. The most straightforward approach is to compare samples from the same type of tissue that has been sampled over time. This approach is suited to address either long or short-term dietary variation, depending on sample regime and which tissue that is sampled. Second, one can compare tissues with different metabolic rates. Since the elements in a given tissue have been assimilating during time spans specific to its metabolic rate, tissues with different metabolic rates will reflect dietary records over different periods. Third, comparisons of sections from tissues with progressive growth, such as hair, feathers, claws and teeth, will reveal temporal variation since these tissues will retain isotopic values in a chronological order. These latter two approaches are mainly suited to address questions regarding intermediate and short-term dietary variation. Knowledge of tissue specific metabolic rates, which determine the molecular turnover for a specific tissue, is of central importance for all these comparisons. Estimates of isotopic fractionation between source and measured target are important if specific hypotheses regarding the source elements are addressed. Estimates of isotopic fractionation, or at least of differences in fractionation between tissues, are necessary if different tissues are compared. We urge for more laboratory experiments aimed at improving our understanding of differential assimilation of dietary components, isotopic fractionation and metabolic routing. We further encourage more studies on reptiles and amphibians, and generally more studies utilizing multiple tissues with different turnover rates.
Journal of Vegetation Science | 2006
Hans Henrik Bruun; Jon Moen; Risto Virtanen; John-Arvid Grytnes; Lauri Oksanen; Anders Angerbjörn
Abstract Question: What is the relationship between species richness of vascular plants, bryophytes and macrolichens, and two important gradients in the alpine environment, altitude and local topography? Location: Northernmost Fennoscandia, 250–1525 m a.s.l. corresponding to the range between timberline and mountain top. Methods: The vegetation was sampled in six mountain areas. For each 25 vertical metres, the local topographic gradient from wind-blown ridge to snowbed was sampled in quadrats of 0.8 m × 0.8 m. Patterns in species richness were explored using Poisson regression (Generalized Linear Models). Functional groups of species, i.e. evergreen and deciduous dwarf-shrubs, forbs, graminoids, mosses, hepatics and lichens were investigated separately. Results: Functional groups showed markedly different patterns with respect to both altitude and topography. Species richness of all vascular plants showed a unimodal relationship with altitude. The same was true for graminoids, forbs and lichens analysed separately, but forb richness peaked at much higher altitudes than total richness. The richness of dwarf-shrubs decreased monotonically with altitude, whereas richness of mosses and liverworts showed an increasing trend. Significant interactions between altitude and local topography were present for several groups. The unimodal pattern for total plant species richness was interpreted in terms of local productivity, physical disturbance, trophic interactions, and in terms of species pool effects. Conclusions: Patterns in local species richness result from the action of two opposing forces: declining species pool and decreasing intensity of competition with altitude. Nomenclature: Nilsson (1986) and Hallingbäck (1995, 1996) for vascular plants, lichens and bryophytes, respectively.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Love Dalén; Veronica Nyström; Cristina Valdiosera; Mietje Germonpré; Mikhail V. Sablin; Elaine Turner; Anders Angerbjörn; Juan Luis Arsuaga; Anders Götherström
How species respond to an increased availability of habitat, for example at the end of the last glaciation, has been well established. In contrast, little is known about the opposite process, when the amount of habitat decreases. The hypothesis of habitat tracking predicts that species should be able to track both increases and decreases in habitat availability. The alternative hypothesis is that populations outside refugia become extinct during periods of unsuitable climate. To test these hypotheses, we used ancient DNA techniques to examine genetic variation in the arctic fox (Alopex lagopus) through an expansion/contraction cycle. The results show that the arctic fox in midlatitude Europe became extinct at the end of the Pleistocene and did not track the habitat when it shifted to the north. Instead, a high genetic similarity between the extant populations in Scandinavia and Siberia suggests an eastern origin for the Scandinavian population at the end of the last glaciation. These results provide new insights into how species respond to climate change, since they suggest that populations are unable to track decreases in habitat avaliability. This implies that arctic species may be particularly vulnerable to increases in global temperatures.
Archaeometry | 2002
Anders Götherström; Matthew J. Collins; Anders Angerbjörn; Kerstin Lidén
The use of ancient DNA has increased during the past two decades in several scientific disciplines. However, the underlying mechanism of DNA degradation in bone tissue are poorly understood. Here w ...
Ecology and Society | 2004
Jon Moen; Karin Aune; Lars Edenius; Anders Angerbjörn
Climate change may strongly influence species distribution and, thus, the structure and function of ecosystems. This paper describes simulated changes in the position of the upper treeline in the Swedish mountains in response to predicted climate change. Data on predicted summer temperature changes, the current position of the treeline, and a digital elevation model were used to predict the position of the treeline over a 100-year timeframe. The results show the treeline advancing upward by 233-667 m, depending on the climate scenario used and location within the mountain chain. Such changes hypothetically caused a 75-85% reduction in treeless alpine heaths, with 60-93% of the remaining areas being scree slopes and boulder fields. For this change to occur, the migration rate of the trees would be in the order of 23-221 m yr -1 , which is well within published migration rates for wind-dispersed deciduous trees. The remaining alpine areas would be strongly fragmented. These drastic changes would influence all aspects of mountain ecosystems, including biodiversity conservation and human land-use patterns.
Oikos | 1998
Magnus Tannerfeldt; Anders Angerbjörn
Fluctuations in essential resources cause a strong selection pressure on the ability to adjust parental investment accordingly. In the dog family, Canidae, variance in female prebirth investment is adjusted by litter size. The arctic fox, Alopex lagopus, is a small canid living on the northern tundras of the world. It has the largest known litter size in the order Carnivora, up to 18 young, and litter size is highly variable. We have analysed data from arctic fox populations throughout the species circumpolar range. In some areas, arctic foxes feed on strongly fluctuating populations of small rodents. In contrast, they have more stable food resources at bird cliffs and along coast lines. Food availability determines arctic fox litter and population sizes. A comparison between fluctuating and stable arctic fox populations showed that fluctuations are associated with large litter sizes. There were significant differences in litter size means, maxima and variances, as well as in placental scar count means. We have discussed five hypotheses on the determination of variation in litter size: one energetic, one genetic (based on density variation), one diet-determined, one based on reproductive allocation and one based on differences in reaction norms. Our findings suggest that litter size in the arctic fox is determined by the combined effect of immediate resource levels and the degree of resource predictability. We describe reaction norms that suggest how litter sizes result from adaptive plasticity within each of two genetic strategies where, according to the jackpot hypothesis, populations with unpredictable food resources generally have larger litter sizes. Within each genetic strategy, or reaction norm, litter sizes are adjusted through a number of plastic traits. These traits are influenced by nutritional limitations and include reduced ovulation rates, prenatal losses, and litter size reduction during the lactation period.
Oecologia | 1994
Anders Angerbjörn; Pall Hersteinsson; Kerstin Lidén; Erle Nelson
We used stable carbon isotopes to analyse individual variation in arctic fox diet. We extracted collagen from bones (the lower jaw), and measured stable carbon isotopes. The foxes came from three different localities: Iceland, where both microtines and reindeer are rare; west Greenland, where microtines are absent; and Sweden, where scat analyses showed the primary food to be microtine rodents and reindeer. The Icelandic samples included foxes from both coastal and inland habitats, the Swedish sample came from an inland area, and the Greenland sample from coastal sites. The spatial variation in the isotopic pattern followed a basic division between marine and terrestrial sources of protein. Arctic foxes from inland sites had δ13C values of −21.4 (Iceland) and −20.4‰ (Sweden), showing typical terrestrial values. Coastal foxes from Greenland had typical marine values of −14.9‰, whereas coastal foxes from Iceland had intermediate values of −17.7‰. However, there was individual variation within each sample, probably caused by habitat heterogeneity and territoriality among foxes. The variation on a larger scale was related to the availability of different food items. These results were in accordance with other dietary analyses based on scat analyses. This is the first time that stable isotopes have been used to reveal individual dietary patterns. Our study also indicated that isotopic values can be used on a global scale.
Biological Conservation | 1989
Pall Hersteinsson; Anders Angerbjörn; Karl Frafjord; Asko Kaikusalo
Abstract The arctic for Alopex lagopus was an important fur animal in Fennoscandia until the 1920s when numbers crashed, and in spite of total protection for over half a century has not recovered and is now regarded as vulnerable. In Iceland, on the other hand, the species is well established and can withstand heavy exploitation by man, being regarded as vermin and hunted at all seasons. In this paper we review the latest available information on the status of the arctic fox in the Nordic countries, both with regard to minimum sizes and fluctuations in population, and various factors which have been suggested as the cause of the non-recovery of the population in Fennoscandia. These include fewer available large mammal carcasses due to the near-disappearance of the wolf, increased competition with the red fox, increased predation by red foxes on arctic foxes, etc. The views that arctic foxes are an important predator on sheep in Iceland at present, and that foxhunting alone in its present form is capable of significantly reducing the population there, are challenged. At present there is insufficient information to make sound management programmes for the arctic fox populations in Fennoscandia and Iceland. Suggestions are made concerning those factors which need to be explored so that workable management programmes can be put into effect in the two regions.
Conservation Genetics | 2004
Love Dalén; Anders Götherström; Anders Angerbjörn
This thesis investigates how changes in population size and spatial movements of individuals have shaped the distribution and abundance of neutral genetic variation in the arctic fox. This is done through mitochondrial and microsatellite DNA analyses on samples covering most of the species’ distribution, but with special emphasis on Scandinavia. On the species level, nucleotide diversity was relatively low, which indicated a historical expansion in population size in connection with the onset of the last Ice Age. It is thus possible that the glacial cycles have affected the arctic fox, and other cold-adapted species, in a way opposite to their effect on temperate species. Gene flow seemed to be high among arctic fox populations on a circumpolar scale, especially between populations where lemmings are the main food source, which could be explained by the spatial synchrony in lemming fluctuations. In Scandinavia, the arctic fox went through a severe demographic bottleneck in the beginning of the 20th century. Although some genetic variation was lost during this bottleneck, the loss was much smaller than expected, probably due to post-bottleneck gene flow from Russia. The arctic fox in Scandinavia is divided into four relatively isolated populations. Within each population, dispersal seemed to be high despite the high availability of empty territories close to natal dens, which supported the hypothesis that lemming fluctuations influence arctic fox dispersal. Genetic analyses on samples collected between 1989 and 2004 indicated an ongoing genetic drift and inbreeding within the Scandinavian populations. Furthermore, individual genetic variation was negatively associated with fitness, which could be attributed to an ongoing inbreeding depression. Analyses on faecal samples suggested that arctic foxes move higher up in the mountains and farther from the tree-line during summer compared to winter. This seasonal shift in distribution is probably caused by interspecific competition from the red fox, which is likely to be higher during summer due to red fox predation on arctic fox cubs. The results presented in this thesis have several implications for the conservation of the Scandinavian arctic fox. The finding of four isolated populations within Scandinavia and an ongoing inbreeding depression suggests that the risk of extinction is higher than previously thought. Conservation actions need to be taken in all populations to be effective, and could include genetic restoration through translocation.
Oecologia | 1998
D.E. Nelson; Anders Angerbjörn; Kerstin Lidén; I. Turk
Abstract Isotopic analyses of fossil bones of the extinct European cave bear indicate that this animal was a hibernator with the same unusual metabolic processes as some modern bear species. This finding provides useful biological and archaeological information on an extinct species, and the methods themselves may prove generally useful in studies of the metabolisms of modern bears, other hibernators, and perhaps of starving animals.