Anders Broo
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders Broo.
Drug Metabolism Reviews | 2007
Lovisa Afzelius; Catrin Hasselgren Arnby; Anders Broo; Lars Carlsson; Christine Isaksson; Ulrik Jurva; Britta Kjellander; Karin Kolmodin; Kristina A. Nilsson; Florian Raubacher; Lars Weidolf
In drug design, it is crucial to have reliable information on how a chemical entity behaves in the presence of metabolizing enzymes. This requires substantial experimental efforts. Consequently, being able to predict the likely site/s of metabolism in any compound, synthesized or virtual, would be highly beneficial and time efficient. In this work, six different methodologies for predictions of the site of metabolism (SOM) have been compared and validated using structurally diverse data sets of drug-like molecules with well-established metabolic pattern in CYP3A4, CYP2C9, or both. Three of the methods predict the SOM based on the ligands chemical structure, two additional methods use structural information of the enzymes, and the sixth method combines structure and ligand similarity and reactivity. The SOM is correctly predicted in 50 to 90% of the cases, depending on method and enzyme, which is an encouraging rate. We also discuss the underlying mechanisms of cytochrome P450 metabolism in the light of the results from this comparison.
Journal of Pharmaceutical Sciences | 2014
Tommy B. Andersson; Anders Broo; Emma Evertsson
A method to predict a compounds sensitivity toward autoxidation using bond dissociation energies for hydrogen abstraction is described. The methodology is based on quantum mechanics and has been validated with a small molecule test set. Through this work, it has been observed that stabilization of an incipient radical by more than a single functional group is normally required to trigger autoxidation. The method has also been used to understand salt effects, wherein protonation of a basic amine stabilizes proximal C-H bonds to autoxidation. It can be used to support understanding of autoxidation processes and can form a predictive role for propensity to form potentially genotoxic and other degradation products. An automated protocol has been developed that allows the nonspecialist to perform quantum chemical calculations. The protocol is robust to enable general usage such that drug-like molecules can be handled by the tool and give an answer in hours (up to some days) depending on the size of the molecule. The efficiency of the tool makes it possible to perform risk assessment for autoxidation of small lists of molecules and could typically be used for shortlisted candidates before drug nomination, during drug formulation development, and during due diligence for in-licensing compounds.
Journal of Medicinal Chemistry | 2012
James S. Scott; Alan Martin Birch; Katy J. Brocklehurst; Anders Broo; Hayley S. Brown; Roger John Butlin; David S. Clarke; Öjvind Davidsson; Anne Ertan; Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; David Laber; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Adrian Pickup; Paul Schofield; Per H. Svensson; Pernilla Sörme; Joanne Teague
G protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound. Small-molecule crystallography was utilized to understand the intermolecular interactions in the solid state and resulted in a switch from an aryl sulphone to a 3-cyanopyridyl motif. The compound was shown to be effective in wild-type but not knockout animals, confirming that the biological effects were due to GPR119 agonism.
MedChemComm | 2013
William Mccoull; Peter Barton; Anders Broo; Alastair J. H. Brown; David S. Clarke; Gareth Coope; Robert D. M. Davies; Alexander G. Dossetter; Elizabeth E. Kelly; Laurent Knerr; Philip A. MacFaul; Jane L. Holmes; Nathaniel G. Martin; Jane E. Moore; D. G. A. Morgan; Claire Newton; Krister Österlund; Graeme R. Robb; Eleanor Rosevere; Nidhal Selmi; Stephen Stokes; Tor Svensson; Victoria Ullah; Emma J. Williams
A pyrazolo-pyrimidinone based series of growth hormone secretagogue receptor type 1a (GHS-R1a) antagonists and inverse agonists were identified using a scaffold hop from known quinazolinone GHS-R1a modulators. Lipophilicity was reduced to decrease hERG activity while maintaining GHS-R1a affinity. SAR exploration of a piperidine substituent was used to identify small cyclic groups as a functional switch from partial agonists to neutral antagonists and inverse agonists. A tool compound was identified which had good overall properties and sufficient oral plasma and CNS exposure to demonstrate reduced food intake in mice through a mechanism involving GHS-R1a.
Bioorganic & Medicinal Chemistry Letters | 2011
Katy J. Brocklehurst; Anders Broo; Roger John Butlin; Hayley S. Brown; David S. Clarke; Öjvind Davidsson; Kristin Goldberg; Sam D. Groombridge; Elizabeth E. Kelly; Andrew G. Leach; Darren Mckerrecher; Charles O’Donnell; Simon M. Poucher; Paul Schofield; James S. Scott; Joanne Teague; Leanne Westgate; Matt J.M. Wood
GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.
Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2016
Anders Broo; Sten O. Nilsson Lill
A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.
Journal of Pharmaceutical Sciences | 2015
Carina Bäcktorp; Eivor Örnskov; Emma Evertsson; Johan Remmelgas; Anders Broo
We have developed a predictive method, based on quantum chemical calculations, that qualitatively predicts N-oxidation by hydrogen peroxides in drug structures. The method uses linear correlations of two complementary approaches to estimate the activation barrier without calculating it explicitly. This method can therefore be automated as it avoids demanding transition state calculations. As such, it may be used by chemists without experience in molecular modeling and provide additional understanding to experimental findings. The predictive method gives relative rates for N,N-dimethylbenzylamine and N-methylmorpholine in good agreement with experiments. In water, the experimental rate constants show that N,N-dimethylbenzylamine is oxidized three times faster than N-methylmorpholine and in methanol it is two times faster. The method suggests it to be two and five times faster, respectively. The method was also used to correlate experimental with predicted activation barriers, linear free-energy relationships, for a test set of tertiary amines. A correlation coefficient R(2) = 0.74 was obtained, where internal diagnostics in the method itself allowed identification of outliers. The method was applied to four drugs: caffeine, azelastine, buspirone, and clomipramine, all possessing several nitrogens. Both overall susceptibility and selectivity of oxidation were predicted, and verified by experiments.
Journal of Pharmaceutical Sciences | 2015
Carina Bäcktorp; Eivor Örnskov; Jenny Ottosson; Emma Evertsson; Johan Remmelgas; Anders Broo
The oxidation reaction of pyridine by hydrogen peroxides in water media was investigated by combining quantum chemical calculations and laboratory experiments. Pyridine was selected as a model system for aromatic amines that frequently occurs in drug molecules. Several different reaction conditions, commonly used in stress testing of drug molecules during drug development, were investigated to increase mechanistic insight to this class of oxidation reactions. Of special interest is to note that small amounts of acetonitrile, a regularly used cosolvent to keep poorly soluble drug molecules in water solution, could catalyze the oxidation reaction in the presence of hydrogen peroxide. Consequently, attention needs to be taken when comparing data from different stress test studies of amine oxidation by hydrogen peroxides at different pH, and with and without acetonitrile. In particular, they need to be controlled when identifying the proper intrinsic stability of the drug molecule.
Crystal Growth & Design | 2014
Sten O. Nilsson Lill; Anders Broo
Archive | 2011
Anders Broo; Johan Gottfries; Michael Kossenjans; Li Lanna; Eva-Lotte Lindstedt-Alstermark; Kristina A. Nilsson; Bengt Ohlsson; Maria Thorstensson; Maria Boije