Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders E. Carlson is active.

Publication


Featured researches published by Anders E. Carlson.


Science | 2009

The last glacial maximum

Peter U. Clark; Arthur S. Dyke; Jeremy D. Shakun; Anders E. Carlson; Jorie Clark; Barbara Wohlfarth; Jerry X. Mitrovica; Steven W. Hostetler; A. Marshall McCabe

The Melting Is in the Details Global sea level rises and falls as ice sheets and glaciers melt and grow, providing an integrated picture of the changes in ice volume but little information about how much individual ice fields are contributing to those variations. Knowing the regional structure of ice variability during glaciations and deglaciations will clarify the mechanisms of the glacial cycle. Clark et al. (p. 710) compiled and analyzed more than 5000 radiocarbon and cosmogenic surface exposure ages in order to develop a record of maximum regional ice extent around the time of the Last Glacial Maximum. The responses of the Northern and Southern Hemispheres differed significantly, which reveals how the evolution of specific ice sheets affected sea level and provides insight into how insolation controlled the deglaciation. Regional patterns are presented of the timing of ice-sheet and mountain-glacier maxima near the end of the last ice age. We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.


Science | 2009

Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming

Zhengyu Liu; Bette L. Otto-Bliesner; Feng He; Esther C. Brady; Robert A. Tomas; Peter U. Clark; Anders E. Carlson; Jean Lynch-Stieglitz; William B. Curry; Edward J. Brook; Daniel Erickson; Robert L. Jacob; John E. Kutzbach; Jun Cheng

Model Behavior The initial pulse of warming during the last deglaciation, which defined the start of an interval called the Bølling-Allerød, occurred abruptly about 14,500 years ago. To date, the most detailed simulations used models of intermediate complexity, not with more sophisticated Coupled Global Climate Models (CGCMs) that can synchronously couple both oceanic and the atmospheric components. Overcoming practical and technical challenges, Liu et al. (p. 310; see the Perspective by Timmermann and Menviel) performed such a simulation using CCSM3, a state-of-the-art ocean-atmosphere CGCM. In contrast to previous studies, which indicated that the Bølling-Allerød was triggered by a nonlinear bifurcation between modes of deep ocean circulation in the Atlantic, the results suggest that the event was a transient response caused by the cessation of meltwater input into the surface ocean in the North Atlantic region. A coupled atmosphere-ocean general circulation model simulates the warming of the last deglaciation. We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO2 forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Global climate evolution during the last deglaciation

Peter U. Clark; Jeremy D. Shakun; Paul A. Baker; Patrick J. Bartlein; Simon Brewer; Edward J. Brook; Anders E. Carlson; Hai Cheng; Darrell S. Kaufman; Zhengyu Liu; Thomas M. Marchitto; Alan C. Mix; Carrie Morrill; Bette L. Otto-Bliesner; Katharina Pahnke; J. M. Russell; Cathy Whitlock; Jess F. Adkins; Jessica L. Blois; Jorie Clark; Steven M. Colman; William B. Curry; Ben P. Flower; Feng He; Thomas C. Johnson; Jean Lynch-Stieglitz; Vera Markgraf; Jerry F. McManus; Jerry X. Mitrovica; Patricio I. Moreno

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO2 and CH4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Science | 2015

Sea-level rise due to polar ice-sheet mass loss during past warm periods

Andrea Dutton; Anders E. Carlson; Antony J. Long; Glenn A. Milne; Peter U. Clark; Robert M. DeConto; Benjamin P. Horton; Stefan Rahmstorf; Maureen E. Raymo

Warming climate, melting ice, rising seas We know that the sea level will rise as climate warms. Nevertheless, accurate projections of how much sea-level rise will occur are difficult to make based solely on modern observations. Determining how ice sheets and sea level have varied in past warm periods can help us better understand how sensitive ice sheets are to higher temperatures. Dutton et al. review recent interdisciplinary progress in understanding this issue, based on data from four different warm intervals over the past 3 million years. Their synthesis provides a clear picture of the progress we have made and the hurdles that still exist. Science, this issue 10.1126/science.aaa4019 Reconstructing past magnitudes, rates, and sources of sea-level rise can help project what our warmer future may hold. BACKGROUND Although thermal expansion of seawater and melting of mountain glaciers have dominated global mean sea level (GMSL) rise over the last century, mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions to GMSL rise under future warming. To better constrain polar ice-sheet response to warmer temperatures, we draw on evidence from interglacial periods in the geologic record that experienced warmer polar temperatures and higher GMSLs than present. Coastal records of sea level from these previous warm periods demonstrate geographic variability because of the influence of several geophysical processes that operate across a range of magnitudes and time scales. Inferring GMSL and ice-volume changes from these reconstructions is nontrivial and generally requires the use of geophysical models. ADVANCES Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise. Advances in our understanding of polar ice-sheet response to warmer climates have been made through an increase in the number and geographic distribution of sea-level reconstructions, better ice-sheet constraints, and the recognition that several geophysical processes cause spatially complex patterns in sea level. In particular, accounting for glacial isostatic processes helps to decipher spatial variability in coastal sea-level records and has reconciled a number of site-specific sea-level reconstructions for warm periods that have occurred within the past several hundred thousand years. This enables us to infer that during recent interglacial periods, small increases in global mean temperature and just a few degrees of polar warming relative to the preindustrial period resulted in ≥6 m of GMSL rise. Mantle-driven dynamic topography introduces large uncertainties on longer time scales, affecting reconstructions for time periods such as the Pliocene (~3 million years ago), when atmospheric CO2 was ~400 parts per million (ppm), similar to that of the present. Both modeling and field evidence suggest that polar ice sheets were smaller during this time period, but because dynamic topography can cause tens of meters of vertical displacement at Earth’s surface on million-year time scales and uncertainty in model predictions of this signal are large, it is currently not possible to make a precise estimate of peak GMSL during the Pliocene. OUTLOOK Our present climate is warming to a level associated with significant polar ice-sheet loss in the past, but a number of challenges remain to further constrain ice-sheet sensitivity to climate change using paleo–sea level records. Improving our understanding of rates of GMSL rise due to polar ice-mass loss is perhaps the most societally relevant information the paleorecord can provide, yet robust estimates of rates of GMSL rise associated with polar ice-sheet retreat and/or collapse remain a weakness in existing sea-level reconstructions. Improving existing magnitudes, rates, and sources of GMSL rise will require a better (global) distribution of sea-level reconstructions with high temporal resolution and precise elevations and should include sites close to present and former ice sheets. Translating such sea-level data into a robust GMSL signal demands integration with geophysical models, which in turn can be tested through improved spatial and temporal sampling of coastal records. Further development is needed to refine estimates of past sea level from geochemical proxies. In particular, paired oxygen isotope and Mg/Ca data are currently unable to provide confident, quantitative estimates of peak sea level during these past warm periods. In some GMSL reconstructions, polar ice-sheet retreat is inferred from the total GMSL budget, but identifying the specific ice-sheet sources is currently hindered by limited field evidence at high latitudes. Given the paucity of such data, emerging geochemical and geophysical techniques show promise for identifying the sectors of the ice sheets that were most vulnerable to collapse in the past and perhaps will be again in the future. Peak global mean temperature, atmospheric CO2, maximum global mean sea level (GMSL), and source(s) of meltwater. Light blue shading indicates uncertainty of GMSL maximum. Red pie charts over Greenland and Antarctica denote fraction (not location) of ice retreat. Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo–sea level records.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ice-shelf collapse from subsurface warming as a trigger for Heinrich events

Shaun A. Marcott; Peter U. Clark; Laurie Padman; Gary P. Klinkhammer; Scott R. Springer; Zhengyu Liu; Bette L. Otto-Bliesner; Anders E. Carlson; Andy Ungerer; June Padman; Jun Cheng; Andreas Schmittner

Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1–2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event.


Reviews of Geophysics | 2012

Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation

Anders E. Carlson; Peter U. Clark

We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Geochemical proxies of North American freshwater routing during the Younger Dryas cold event

Anders E. Carlson; Peter U. Clark; Brian Haley; Gary P. Klinkhammer; Kathleen Simmons; Edward J. Brook; K. J. Meissner

The Younger Dryas cold interval represents a time when much of the Northern Hemisphere cooled from ≈12.9 to 11.5 kiloyears B.P. The cause of this event, which has long been viewed as the canonical example of abrupt climate change, was initially attributed to the routing of freshwater to the St. Lawrence River with an attendant reduction in Atlantic meridional overturning circulation. However, this mechanism has recently been questioned because current proxies and dating techniques have been unable to confirm that eastward routing with an increase in freshwater flux occurred during the Younger Dryas. Here we use new geochemical proxies (ΔMg/Ca, U/Ca, and 87Sr/86Sr) measured in planktonic foraminifera at the mouth of the St. Lawrence estuary as tracers of freshwater sources to further evaluate this question. Our proxies, combined with planktonic δ18Oseawater and δ13C, confirm that routing of runoff from western Canada to the St. Lawrence River occurred at the start of the Younger Dryas, with an attendant increase in freshwater flux of 0.06 ± 0.02 Sverdrup (1 Sverdrup = 106 m3·s−1). This base discharge increase is sufficient to have reduced Atlantic meridional overturning circulation and caused the Younger Dryas cold interval. In addition, our data indicate subsequent fluctuations in the freshwater flux to the St. Lawrence River of ≈0.06–0.12 Sverdrup, thus explaining the variability in the overturning circulation and climate during the Younger Dryas.


Science | 2014

Greenland temperature response to climate forcing during the last deglaciation.

Christo Buizert; Vasileios Gkinis; Jeffrey P. Severinghaus; Feng He; Benoit S. Lecavalier; Philippe Kindler; Markus Leuenberger; Anders E. Carlson; B. M. Vinther; Valérie Masson-Delmotte; James W. C. White; Zhengyu Liu; Bette L. Otto-Bliesner; Edward J. Brook

Old and older, cold and colder Greenland surface air temperatures changed dramatically during the last deglaciation. The exact amount is unknown, which makes it difficult to understand what caused those changes. Buizert et al. report temperature reconstructions for the period from 19,000 to 10,000 years before the present from three different locations in Greenland and interpret them with a climate model (see the Perspective by Sime). They provide the broad geographic pattern of temperature variability and infer the mechanisms of the changes and their seasonality, which differ in important ways from the traditional view. Science, this issue p. 1177; see also p. 1116 Multiple proxies from ice cores show the spatial pattern of warming in Greenland over the last deglaciation. Greenland ice core water isotopic composition (δ18O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ18O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.


Science | 2011

Sr-Nd-Pb Isotope Evidence for Ice-Sheet Presence on Southern Greenland During the Last Interglacial

Elizabeth J. Colville; Anders E. Carlson; Brian L. Beard; Robert G. Hatfield; Joseph S. Stoner; Alberto V. Reyes; David J. Ullman

Melting of the Antarctic Ice Sheet contributed substantially to the excess sea-level rise of the last interglacial period. To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the ≥4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.


Nature | 2013

Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation

Feng He; Jeremy D. Shakun; Peter U. Clark; Anders E. Carlson; Zhengyu Liu; Bette L. Otto-Bliesner; John E. Kutzbach

According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere–ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO2 concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22–14.3 kyr bp). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow–albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO2 concentration provided the critical feedback on global deglaciation.

Collaboration


Dive into the Anders E. Carlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allegra N. LeGrande

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Kelsey Winsor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David J. Ullman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bette L. Otto-Bliesner

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng He

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge