Anders E. G. Lindgren
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders E. G. Lindgren.
Journal of Medicinal Chemistry | 2013
Tobias Ginman; Jenny Viklund; Jonas Malmström; Jan Blid; Rikard Emond; Rickard Forsblom; Anh Johansson; Annika Kers; Fredrik Lake; Fernando Sehgelmeble; Karin J. Sterky; Margareta Bergh; Anders E. G. Lindgren; Patrik Johansson; Fredrik Jeppsson; Johanna Fälting; Ylva Gravenfors; Fredrik Rahm
By use of iterative design aided by predictive models for target affinity, brain permeability, and hERG activity, novel and diverse compounds based on cyclic amidine and guanidine cores were synthesized with the goal of finding BACE-1 inhibitors as a treatment for Alzheimers disease. Since synthesis feasibility had low priority in the design of the cores, an extensive synthesis effort was needed to make the relevant compounds. Syntheses of these compounds are reported, together with physicochemical properties and structure-activity relationships based on in vitro data. Four crystal structures of diverse amidines binding in the active site are deposited and discussed. Inhibitors of BACE-1 with 3 μM to 32 nM potencies in cells are shown, together with data on in vivo brain exposure levels for four compounds. The results presented show the importance of the core structure for the profile of the final compounds.
Journal of Medicinal Chemistry | 2012
C. David Andersson; Tobias Karlberg; Torun Ekblad; Anders E. G. Lindgren; Ann-Gerd Thorsell; Sara Spjut; Urszula Uciechowska; Moritz S. Niemiec; Pernilla Wittung-Stafshede; Johan Weigelt; Mikael Elofsson; Herwig Schüler; Anna Linusson
The diphtheria toxin-like ADP-ribosyltransferases (ARTDs) are an enzyme family that catalyzes the transfer of ADP-ribose units onto substrate proteins by using nicotinamide adenine dinucleotide (NAD(+)) as a cosubstrate. They have a documented role in chromatin remodelling and DNA repair, and inhibitors of ARTD1 and 2 (PARP1 and 2) are currently in clinical trials for the treatment of cancer. The detailed function of most other ARTDs is still unknown. By using virtual screening, we identified small ligands of ARTD7 (PARP15/BAL3) and ARTD8 (PARP14/BAL2). Thermal-shift assays confirmed that 16 compounds, belonging to eight structural classes, bound to ARTD7/ARTD8. Affinity measurements with isothermal titration calorimetry for two isomers of the most promising hit compound confirmed binding in the low micromolar range to ARTD8. Crystal structures showed anchoring of the hits in the nicotinamide pocket. These results form a starting point in the development of chemical tools for the study of the role and function of ARTD7 and ARTD8.
ACS Chemical Biology | 2013
Anders E. G. Lindgren; Tobias Karlberg; Ann-Gerd Thorsell; M Hesse; Sara Spjut; Torun Ekblad; C.D Andersson; Ana Filipa Pinto; Johan Weigelt; Michael O. Hottiger; Anna Linusson; Mikael Elofsson; Herwig Schüler
Inhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme family suggests selectivity for ARTD3, and crystal structures illustrate the molecular basis for inhibitor selectivity. The compound is active in cells, where it elicits ARTD3-specific effects at submicromolar concentration. Our results show that by targeting the nicotinamide binding site, selective inhibition can be achieved among the closest relatives of the validated clinical target, ADP-ribosyltransferase-1/poly(ADP-ribose) polymerase-1.
European Journal of Medicinal Chemistry | 2015
Torun Ekblad; Anders E. G. Lindgren; C. David Andersson; Rémi Caraballo; Ann-Gerd Thorsell; Tobias Karlberg; Sara Spjut; Anna Linusson; Herwig Schüler; Mikael Elofsson
Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14, ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits ARTD10 with sub-micromolar IC50.
European Journal of Medicinal Chemistry | 2012
Christoffer Bengtsson; Anders E. G. Lindgren; Hanna Uvell; Fredrik Almqvist
Antibacterial resistance is today a worldwide problem and the demand for new classes of antibacterial agents with new mode of action is enormous. In the strive for new antibacterial agents that inhibit pilus assembly, an important virulence factor, routes to introduce triazoles in position 8 and 2 of ring-fused bicyclic 2-pyridones have been developed. This was made via Sonogashira couplings followed by Huisgen 1,3-dipolar cycloadditions. The method development made it possible to introduce a diverse series of substituted triazoles and their antibacterial properties were tested in a whole cell pili-dependent biofilm assay. Most of the twenty four candidates tested showed low to no activity but interestingly three compounds, one 8-substituted and two 2-substituted, showed promising activities with EC(50)s between 9 and 50 μM.
Antimicrobial Agents and Chemotherapy | 2014
Sania Marwaha; Hanna Uvell; Olli Salin; Anders E. G. Lindgren; Jim Silver; Mikael Elofsson; Åsa Gylfe
ABSTRACT Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.
Journal of Medicinal Chemistry | 2013
Anders E. G. Lindgren; Tobias Karlberg; Torun Ekblad; Sara Spjut; Ann-Gerd Thorsell; C. David Andersson; Ton Tong Nhan; Victor Hellsten; Johan Weigelt; Anna Linusson; Herwig Schüler; Mikael Elofsson
The racemic 3-(4-oxo-3,4-dihydroquinazolin-2-yl)-N-[1-(pyridin-2-yl)ethyl]propanamide, 1, has previously been identified as a potent but unselective inhibitor of diphtheria toxin-like ADP-ribosyltransferase 3 (ARTD3). Herein we describe synthesis and evaluation of 55 compounds in this class. It was found that the stereochemistry is of great importance for both selectivity and potency and that substituents on the phenyl ring resulted in poor solubility. Certain variations at the meso position were tolerated and caused a large shift in the binding pose. Changes to the ethylene linker that connects the quinazolinone to the amide were also investigated but proved detrimental to binding. By combination of synthetic organic chemistry and structure-based design, two selective inhibitors of ARTD3 were discovered.
Current Drug Metabolism | 2016
Anna-Karin Sohlenius-Sternbeck; Juliette Janson; Johan Bylund; Pawel Baranczewski; Anna Breitholtz-Emanuelsson; Yin Hu; Carrie Tsoi; Anders E. G. Lindgren; Olle Gissberg; Tjerk Bueters; Sveinn Briem; Sanja Juric; Jenny U. Johansson; Margareta Bergh; Janet Hoogstraate
BACKGROUND The disposition of a drug is dependent on interactions between the body and the drug, its molecular properties and the physical and biological barriers presented in the body. In order for a drug to have a desired pharmacological effect it has to have the right properties to be able to reach the target site in sufficient concentration. This review details how drug metabolism and pharmacokinetics (DMPK) and physicochemical deliveries played an important role in data interpretation and compound optimization at AstraZeneca R&D in Södertälje, Sweden. METHODS A selection of assays central in the evaluation of the DMPK properties of new chemical entities is presented, with guidance and consideration on assay outcome interpretation. Early in projects, solubility, LogD, permeability and metabolic stability were measured to support effective optimization of DMPK properties. Changes made to facilitate high throughput, efficient bioanalysis and the handling of large amounts of samples are described. Already early in drug discovery, we used an integrated approach for the prediction of the fate of drugs in human (early dose to man) based on data obtained from in vitro experiments. The early dose to man was refined with project progression, which triggered more intricate assays and experiments. At later stages, preclinical in vivo pharmacokinetic (PK) data was integrated with pharmacodynamics (PD) to allow predictions of required dose, dose intervals and exposure profile to achieve the desired effect in man. RESULTS AND CONCLUSIONS A well-defined work flow of DMPK activities from early lead identification up to the selection of a candidate drug was developed. This resulted in a cost effective and efficient optimization of chemical series, and facilitated informed decision making throughout project progress.
Methods of Molecular Biology | 2014
Anders E. G. Lindgren; Andreas Larsson; Anna Linusson; Michael Elofsson
In high-throughput screening (HTS) a robust assay is used to interrogate a large collection of small organic molecules in order to find compounds, hits, with a desired biological activity. The hits are then further explored by an iterative process where new compounds are designed, purchased, or synthesized, followed by an evaluation in one or more assays. Statistical molecular design (SMD) is a useful method to select a balanced, varied, and information-rich compound collection based on hits from HTS in order to create a foundation for development of optimized compounds with improved properties. In this chapter, we describe the use of SMD to explore a hit obtained from small-molecule screening.
SLAS DISCOVERY: Advancing Life Sciences R&D | 2018
Torun Ekblad; Patricia Verheugd; Anders E. G. Lindgren; Tomas Nyman; Mikael Elofsson; Herwig Schüler
Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration–response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.