Anders Elfwing
Linköping University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders Elfwing.
Journal of Materials Chemistry | 2016
Fátima Ajjan; Nerea Casado; Tomasz Rębiś; Anders Elfwing; Niclas Solin; David Mecerreyes; Olle Inganäs
Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge–discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g−1) compared to reference PEDOT electrodes (80.4 F g−1). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.
Plasmonics | 2014
Erik Martinsson; Borja Sepúlveda; Peng Chen; Anders Elfwing; Bo Liedberg; Daniel Aili
The possibility to enhance the local refractive index sensitivity using plasmonic coupling between spherical gold nanoparticles (Au-NPs) has been investigated. A strong and distinct optical coupling between Au-NPs of various sizes was achieved by controlling the interparticle separation using a layer-by-layer assembly of polyelectrolytes. The frequency of the coupled plasmon peak could be tuned by varying either the particle size or the interparticle separation, shown both experimentally and by theoretical simulations. The bulk refractive index (RI) sensitivity for the plasmonic coupling modes was investigated and compared to the RI sensitivity of monolayers of well-separated Au-NPs, and the results clearly demonstrates that the RI sensitivity can be significantly enhanced in plasmonically coupled Au-NPs. The proposed approach is simple and scalable and improves the rather modest RI sensitivity of spherical gold nanoparticles with a factor of 3, providing a new route for fabrication of inexpensive sensors based on plasmonic nanostructures.
Journal of Materials Chemistry | 2014
Shimelis Admassie; Anders Elfwing; Edwin Jager; Qinye Bao; Olle Inganäs
A ternary composite supercapacitor electrode consisting of phosphomolybdic acid (HMA), a renewable biopolymer, lignin, and polypyrrole was synthesized by a simple one-step simultaneous electrochemical deposition and characterized by electrochemical methods. It was found that the addition of HMA increased the specific capacitance of the polypyrrole–lignin composite from 477 to 682 F g−1 (at a discharge current of 1 A g−1) and also significantly improved the charge storage capacity from 69 to 128 mA h g−1.
Small | 2013
Mahiar Hamedi; Anders Elfwing; Roger Gabrielsson; Olle Inganäs
Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.
Materials horizons | 2016
Shimelis Admassie; Fátima Ajjan; Anders Elfwing; Olle Inganäs
Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.
Scientific Reports | 2015
Patrik K. Johansson; David Jullesson; Anders Elfwing; Sara I. Liin; Chiara Musumeci; Erica Zeglio; Fredrik Elinder; Niclas Solin; Olle Inganäs
Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.
Journal of Materials Chemistry C | 2015
Anders Elfwing; Fredrik G. Bäcklund; Chiara Musumeci; Olle Inganäs; Niclas Solin
Herein we report on the investigation of self-assembled protein nanofibrils functionalized with metallic organic compounds. We have characterized the electronic behaviour of individual nanowires using conductive atomic force microscopy. In order to follow the self assembly process we have incorporated fluorescent molecules into the protein and used the energy transfer between the internalized dye and the metallic coating to probe the binding of the polyelectrolyte to the fibril.
Journal of Materials Chemistry | 2015
Zheng Tang; Anders Elfwing; Armantas Melianas; Jonas Bergqvist; Qinye Bao; Olle Inganäs
We demonstrate the use of low cost paper as an efficient light-trapping element for thin film photovoltaics. We verify its use in fully-solution processed organic photovoltaic devices with the highest power conversion efficiency and the lowest internal electrical losses reported so far, the architecture of which – unlike most of the studied geometries to date – is suitable for upscaling, i.e. commercialization. The use of the paper-reflector enhances the external quantum efficiency (EQE) of the organic photovoltaic device by a factor of ≈1.5–2.5 over the solar spectrum, which rivals the light harvesting efficiency of a highly-reflective but also considerably more expensive silver mirror back-reflector. Moreover, by detailed theoretical and experimental analysis, we show that further improvements in the photovoltaic performance of organic solar cells employing PEDOT:PSS as both electrodes rely on the future development of high-conductivity and high-transmittance PEDOT:PSS. This is due optical losses in the PEDOT:PSS electrodes.
Environmental Science: Water Research & Technology | 2015
Shimelis Admassie; Anders Elfwing; Andreas Skallberg; Olle Inganäs
Renewable, environmentally friendly and cheap materials like lignin and cellulose have been considered as promising materials for use in energy storage technologies. Here, we report a new application for biopolymer electrodes where they can also be simultaneously used as ion pumps to purify industrial wastewater and drinking water contaminated with toxic metals. A ternary composite film consisting of a conducting polymer polypyrrole (PPy), biopolymer lignin (LG) and anthraquinonesulfonate (AQS) was synthesized by one-step galvanostatic polymerization from an aqueous electrolyte solution. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) techniques revealed that lead ions can be extracted from a neutral aqueous solution containing lead ions by applying a potential, and can be released into another solution by reversing the polarity of the applied potential. Electrochemical quartz crystal microbalance was used to quantify the amount of metal ions that can be extracted and released.
Scientific Reports | 2018
Luis Ever Aguirre; Liangqi Ouyang; Anders Elfwing; Mikael Hedblom; Angela Wulff; Olle Inganäs
The evolutionary causes for generation of nano and microstructured silica by photosynthetic algae are not yet deciphered. Diatoms are single photosynthetic algal cells populating the oceans and waters around the globe. They generate a considerable fraction (20–30%) of all oxygen from photosynthesis, and 45% of total primary production of organic material in the sea. There are more than 100,000 species of diatoms, classified by the shape of the glass cage in which they live, and which they build during algal growth. These glass structures have accumulated for the last 100 million of years, and left rich deposits of nano/microstructured silicon oxide in the form of diatomaceous earth around the globe. Here we show that reflection of ultraviolet light by nanostructured silica can protect the deoxyribonucleic acid (DNA) in the algal cells, and that this may be an evolutionary cause for the formation of glass cages.