Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Folkesson is active.

Publication


Featured researches published by Anders Folkesson.


Nature Reviews Microbiology | 2012

Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective

Anders Folkesson; Lars Jelsbak; Lei Yang; Helle Krogh Johansen; Oana Ciofu; Niels Høiby; Søren Molin

The airways of patients with cystic fibrosis (CF) are nearly always infected with many different microorganisms. This environment offers warm, humid and nutrient-rich conditions, but is also stressful owing to frequent antibiotic therapy and the host immune response. Pseudomonas aeruginosa is commonly isolated from the airways of patients with CF, where it most often establishes chronic infections that usually persist for the rest of the lives of the patients. This bacterium is a major cause of mortality and morbidity and has therefore been studied intensely. Here, we discuss how P. aeruginosa evolves from a state of early, recurrent intermittent colonization of the airways of patients with CF to a chronic infection state, and how this process offers opportunities to study bacterial evolution in natural environments. We believe that such studies are valuable not only for our understanding of bacterial evolution but also for the future development of new therapeutic strategies to treat severe chronic infections.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolutionary dynamics of bacteria in a human host environment

Lei Yang; Lars Jelsbak; Rasmus Lykke Marvig; Søren Damkiær; Christopher T. Workman; Martin Holm Rau; Susse Kirkelund Hansen; Anders Folkesson; Helle Krogh Johansen; Oana Ciofu; Niels Høiby; Morten Otto Alexander Sommer; Søren Molin

Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment. In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations with pleiotropic effects, followed by a period of genetic drift with limited phenotypic change and a genomic signature of negative selection, suggesting that the evolving lineage has reached a major adaptive peak in the fitness landscape. This contrasts with previous findings of continued positive selection from long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.


Journal of Bacteriology | 2007

Differentiation and Distribution of Colistin- and Sodium Dodecyl Sulfate-Tolerant Cells in Pseudomonas aeruginosa Biofilms

Janus A. J. Haagensen; Mikkel Klausen; Robert K. Ernst; Samuel I. Miller; Anders Folkesson; Tim Tolker-Nielsen; Søren Molin

During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom-shaped multicellular structures. The cap-forming subpopulation was found to develop tolerance to membrane-targeting antimicrobial agents, such as the cyclic cationic peptide colistin and the detergent sodium dodecyl sulfate. The stalk-forming subpopulation, on the other hand, was sensitive to the membrane-targeting antibacterial agents. All biofilm-associated cells were sensitive to the antibacterial agents when tested in standard plate assays. A mutation eliminating the production of type IV pili, and hence surface-associated motility, prevented the formation of regular mushroom-shaped structures in the flow cell biofilms, and the development of tolerance to the antimicrobial agents was found to be affected as well. Mutations in genes interfering with lipopolysaccharide modification (pmr) eliminated the biofilm-associated colistin tolerance phenotype. Experiments with a PAO1 strain harboring a pmr-gfp fusion showed that only the cap-forming subpopulation in biofilms treated with colistin expresses the pmr operon. These results suggest that increased antibiotic tolerance in biofilms may be a consequence of differentiation into distinct subpopulations with different phenotypic properties.


The ISME Journal | 2012

Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection

Susse Kirkelund Hansen; Martin Holm Rau; Helle Krogh Johansen; Oana Ciofu; Lars Jelsbak; Lei Yang; Anders Folkesson; Hanne Østergaard Jarmer; Kasper Aanaes; Christian von Buchwald; Niels Høiby; Søren Molin

The opportunistic pathogen Pseudomonas aeruginosa is a frequent colonizer of the airways of patients suffering from cystic fibrosis (CF). Depending on early treatment regimens, the colonization will, with high probability, develop into chronic infections sooner or later, and it is important to establish under which conditions the switch to chronic infection takes place. In association with a recently established sinus surgery treatment program for CF patients at the Copenhagen CF Center, colonization of the paranasal sinuses with P. aeruginosa has been investigated, paralleled by sampling of sputum from the same patients. On the basis of genotyping and phenotypic characterization including transcription profiling, the diversity of the P. aeruginosa populations in the sinuses and the lower airways was investigated and compared. The observations made from several children show that the paranasal sinuses constitute an important niche for the colonizing bacteria in many patients. The paranasal sinuses often harbor distinct bacterial subpopulations, and in the early colonization phases there seems to be a migration from the sinuses to the lower airways, suggesting that independent adaptation and evolution take place in the sinuses. Importantly, before the onset of chronic lung infection, lineages with mutations conferring a large fitness benefit in CF airways such as mucA and lasR as well as small colony variants and antibiotic-resistant clones are part of the sinus populations. Thus, the paranasal sinuses potentially constitute a protected niche of adapted clones of P. aeruginosa, which can intermittently seed the lungs and pave the way for subsequent chronic lung infections.


PLOS ONE | 2008

Biofilm Induced Tolerance Towards Antimicrobial Peptides

Anders Folkesson; Janus A. J. Haagensen; Claudia Zampaloni; Claus Sternberg; Søren Molin

Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.


International Journal of Antimicrobial Agents | 2013

High in vitro antimicrobial activity of β-peptoid–peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis

Yang Liu; Kolja M. Knapp; Liang Yang; Søren Molin; Henrik Franzyk; Anders Folkesson

An array of β-peptoid-peptide hybrid oligomers displaying different amino acid/peptoid compositions and chain lengths was studied with respect to antimicrobial activity against Staphylococcus epidermidis both in planktonic and biofilm cultures, comparing the effects with those of the common antibiotic vancomycin. Susceptibility and time-kill assays were performed to investigate activity against planktonic cells, whilst confocal laser scanning microscopy was used to investigate the dynamics of the activity against cells within biofilms. All tested peptidomimetics were bactericidal against both exponentially growing and stationary-phase S. epidermidis cells with similar killing kinetics. At the minimum inhibitory concentration (MIC), all peptidomimetics inhibited biofilm formation, whilst peptidomimetics at concentrations above the MIC (80-160μg/mL) eradicated young (6-h-old) biofilms, whilst even higher concentrations were needed to eradicate mature (24-h-old) biofilms completely. Chiral and guanidinylated hybrids exhibited the fastest killing effects against slow-growing cells and had more favourable antibiofilm properties than analogues only containing lysine or lacking chirality in the β-peptoid residues. However, the results of the mature biofilm killing assay indicated more complex structure-activity relationships. Cytotoxicity assays showed a clear correlation between oligomer length and cell toxicity within each subclass of peptides, but all possessed a high differential toxicity favouring killing of bacterial cells. This class of peptidomimetics may constitute promising antimicrobial alternatives for the prevention and treatment of multidrug-resistant S. epidermidis infections.


International Journal of Antimicrobial Agents | 2016

Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa

Martin Vestergaard; Wilhelm Paulander; Rasmus Lykke Marvig; Julie Clasen; Nicholas Jochumsen; Søren Molin; Lars Jelsbak; Hanne Ingmer; Anders Folkesson

Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene mexR that regulates the multidrug efflux operon mexAB-oprM. Deregulation of this operon led to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD-OprJ efflux pump regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use, combination therapy consistently selected for mutants with enhanced fitness expressing broad-spectrum resistance mechanisms.


Nature Communications | 2016

The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions

Nicholas Jochumsen; Rasmus Lykke Marvig; Søren Damkiær; Rune Lyngklip Jensen; Wilhelm Paulander; Søren Molin; Lars Jelsbak; Anders Folkesson

Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher resistance by functionalizing and increasing the effect of the other mutations. These results add to our understanding of clinical antimicrobial peptide resistance and the prediction of resistance evolution.


PLOS ONE | 2014

Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

Wilhelm Paulander; Ying Wang; Anders Folkesson; Godefroid Charbon; Anders Løbner-Olesen; Hanne Ingmer

It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH•) formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF) probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.


Scientific Reports | 2016

A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations

Rasmus Bojsen; Birgitte Regenberg; David Gresham; Anders Folkesson

Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.

Collaboration


Dive into the Anders Folkesson's collaboration.

Top Co-Authors

Avatar

Søren Molin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lars Jelsbak

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Julie Clasen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anna Camilla Birkegård

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Nils Toft

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaare Græsbøll

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Nicholas Jochumsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge