Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Gorm Pedersen is active.

Publication


Featured researches published by Anders Gorm Pedersen.


Nature Biotechnology | 2007

A human phenome-interactome network of protein complexes implicated in genetic disorders

Kasper Lage; E. Olof Karlberg; Zenia M Størling; Páll Ísólfur Ólason; Anders Gorm Pedersen; Olga Rigina; Anders M. Hinsby; Zeynep Tümer; Flemming Pociot; Niels Tommerup; Yves Moreau; Søren Brunak

We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, computationally derived phenotype similarity score, permitting identification of previously unknown complexes likely to be associated with disease. Using a phenomic ranking of protein complexes linked to human disease, we developed a Bayesian predictor that in 298 of 669 linkage intervals correctly ranks the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type 2 diabetes and coronary heart disease. Our publicly available draft of protein complexes associated with pathology comprises 506 complexes, which reveal functional relationships between disease-promoting genes that will inform future experimentation.


Nature Biotechnology | 2014

Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

H. Bjørn Nielsen; Mathieu Almeida; Agnieszka Sierakowska Juncker; Simon Rasmussen; Junhua Li; Shinichi Sunagawa; Damian Rafal Plichta; Laurent Gautier; Anders Gorm Pedersen; Eric Pelletier; Ida Bonde; Trine Nielsen; Chaysavanh Manichanh; Manimozhiyan Arumugam; Jean-Michel Batto; Marcelo B Quintanilha dos Santos; Nikolaj Blom; Natalia Borruel; Kristoffer Sølvsten Burgdorf; Fouad Boumezbeur; Francesc Casellas; Joël Doré; Piotr Dworzynski; Francisco Guarner; Torben Hansen; Falk Hildebrand; Rolf Sommer Kaas; Sean Kennedy; Karsten Kristiansen; Jens Roat Kultima

Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.


Computational Biology and Chemistry | 1999

The biology of eukaryotic promoter prediction—a review

Anders Gorm Pedersen; Pierre Baldi; Yves Chauvin; Søren Brunak

Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance between functional promoters has been estimated to be in the range of 30-40 kilobases. Although it is conceivable that some of these predicted promoters correspond to cryptic initiation sites that are used in vivo, it is likely that most are false positives. This suggests that it is important to carefully reconsider the biological data that forms the basis of current algorithms, and we here present a review of data that may be useful in this regard. The review covers the following topics: (1) basal transcription and core promoters, (2) activated transcription and transcription factor binding sites, (3) CpG islands and DNA methylation, (4) chromosomal structure and nucleosome modification, and (5) chromosomal domains and domain boundaries. We discuss the possible lessons that may be learned, especially with respect to the wealth of information about epigenetic regulation of transcription that has been appearing in recent years.


PLOS Computational Biology | 2010

Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

Thomas Salhøj Rask; Daniel Aaen Hansen; Thor G. Theander; Anders Gorm Pedersen; Thomas Lavstsen

The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function.


Cell | 2015

Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago

Simon Rasmussen; Morten E. Allentoft; Kasper Nielsen; Ludovic Orlando; Martin Sikora; Karl-Göran Sjögren; Anders Gorm Pedersen; Mikkel Schubert; Alex Van Dam; Christian Moliin Outzen Kapel; Henrik Bjørn Nielsen; Søren Brunak; Pavel Avetisyan; Andrey Epimakhov; Mikhail Viktorovich Khalyapin; Artak Gnuni; Aivar Kriiska; Irena Lasak; Mait Metspalu; Vyacheslav Moiseyev; Andrei Gromov; Dalia Pokutta; Lehti Saag; Liivi Varul; Levon Yepiskoposyan; Thomas Sicheritz-Pontén; Robert Foley; Marta Mirazón Lahr; Rasmus Nielsen; Kristian Kristiansen

Summary The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics.


PLOS Pathogens | 2006

Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration

Madeleine Dahlbäck; Thomas Salhøj Rask; Pernille Andersen; Morten A. Nielsen; Nicaise Tuikue Ndam; Mafalda Resende; Louise Turner; Philippe Deloron; Lars Hviid; Ole Lund; Anders Gorm Pedersen; Thor G. Theander; Ali Salanti

Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria.


The New England Journal of Medicine | 2016

Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring

Hans Bisgaard; Jakob Stokholm; Bo L. Chawes; Nadja Hawwa Vissing; Elín Bjarnadóttir; Ann-Marie Malby Schoos; Helene M. Wolsk; Tine Marie Pedersen; Rebecca K. Vinding; Sunna Thorsteinsdóttir; Nilofar V. Følsgaard; Nadia R. Fink; Jonathan Thorsen; Anders Gorm Pedersen; Johannes Waage; Morten Rasmussen; Ken D. Stark; Sjurdur F. Olsen; Klaus Bønnelykke

BACKGROUND Reduced intake of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) may be a contributing factor to the increasing prevalence of wheezing disorders. We assessed the effect of supplementation with n-3 LCPUFAs in pregnant women on the risk of persistent wheeze and asthma in their offspring. METHODS We randomly assigned 736 pregnant women at 24 weeks of gestation to receive 2.4 g of n-3 LCPUFA (fish oil) or placebo (olive oil) per day. Their children formed the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort and were followed prospectively with extensive clinical phenotyping. Neither the investigators nor the participants were aware of group assignments during follow-up for the first 3 years of the childrens lives, after which there was a 2-year follow-up period during which only the investigators were unaware of group assignments. The primary end point was persistent wheeze or asthma, and the secondary end points included lower respiratory tract infections, asthma exacerbations, eczema, and allergic sensitization. RESULTS A total of 695 children were included in the trial, and 95.5% completed the 3-year, double-blind follow-up period. The risk of persistent wheeze or asthma in the treatment group was 16.9%, versus 23.7% in the control group (hazard ratio, 0.69; 95% confidence interval [CI], 0.49 to 0.97; P=0.035), corresponding to a relative reduction of 30.7%. Prespecified subgroup analyses suggested that the effect was strongest in the children of women whose blood levels of eicosapentaenoic acid and docosahexaenoic acid were in the lowest third of the trial population at randomization: 17.5% versus 34.1% (hazard ratio, 0.46; 95% CI, 0.25 to 0.83; P=0.011). Analyses of secondary end points showed that supplementation with n-3 LCPUFA was associated with a reduced risk of infections of the lower respiratory tract (31.7% vs. 39.1%; hazard ratio, 0.75; 95% CI, 0.58 to 0.98; P=0.033), but there was no statistically significant association between supplementation and asthma exacerbations, eczema, or allergic sensitization. CONCLUSIONS Supplementation with n-3 LCPUFA in the third trimester of pregnancy reduced the absolute risk of persistent wheeze or asthma and infections of the lower respiratory tract in offspring by approximately 7 percentage points, or one third. (Funded by the Lundbeck Foundation and others; ClinicalTrials.gov number, NCT00798226 .).


Virology | 2003

Characterization of incompletely typed rotavirus strains from Guinea-Bissau: identification of G8 and G9 types and a high frequency of mixed infections

Thea Kølsen Fischer; Nicola Page; D.D Griffin; Jesper Eugen-Olsen; Anders Gorm Pedersen; Palle Valentiner-Branth; Kåre Mølbak; Halvor Sommerfelt; N.Munk Nielsen

Among 167 rotavirus specimens collected from young children in a suburban area of Bissau, Guinea-Bissau, from 1996 to 1998, most identifiable strains belonged to the uncommon P[6], G2 type and approximately 50% remained incompletely typed. In the present study, 76 such strains were further characterized. Due to interprimer interaction during the standard multiplex PCR approach, modifications of this procedure were implemented. The modified analyses revealed a high frequency of G2, G8, and G9 genotypes, often combined with P[4] and/or P[6]. The Guinean G8 and G9 strains were 97 and 98%, respectively, identical to other African G8 and G9 strains. Multiple G and/or P types were identified at a high frequency (59%), including two previously undescribed mixed infections, P[4]P[6], G2G8 and P[4]P[6], G2G9. These mixed infections most likely represent naturally occurring reassortance of rotavirus strains. Detection of such strains among the previously incompletely typed strains indicates a potential underestimation of mixed infections, if only a standard multiplex PCR procedure is followed. Furthermore cross-priming of the G3 primer with the G8 primer binding site and silent mutations at the P[4] and P[6] primer binding sites were detected. These findings highlight the need for regular evaluation of the multiplex primer PCR method and typing primers. The high frequency of uncommon as well as reassortant rotavirus strains in countries where rotavirus is an important cause of child mortality underscores the need for extensive strain surveillance as a basis to develop appropriate rotavirus vaccine candidates.


BMC Bioinformatics | 2007

MaxAlign: maximizing usable data in an alignment

Rodrigo Gouveia-Oliveira; Peter Wad Sackett; Anders Gorm Pedersen

BackgroundThe presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment.ResultsMaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns – the alignment area – by selecting the optimal subset of sequences to exclude from the alignment.MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAligns performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies.ConclusionWe demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences.The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.


Journal of Clinical Microbiology | 2005

Characterization of Rotavirus Strains in a Danish Population: High Frequency of Mixed Infections and Diversity within the VP4 Gene of P[8] Strains

Thea Kølsen Fischer; Jesper Eugen-Olsen; Anders Gorm Pedersen; Kåre Mølbak; Blenda Böttiger; K. Rostgaard; Nete Munk Nielsen

ABSTRACT We characterized the G and P types from 162 rotavirus-positive stool specimens collected from 162 persons in Denmark (134 children and 28 adults) with acute diarrhea in 1998, 2000, and 2002. Samples were obtained during outpatient consultations (73%) and from hospitalized patients (27%). Although more than 20 different G-P combinations were identified, only 52% represented the globally most common types G1P[8], G2P[4], and G4P[8]. The G9 genotype, which is emerging worldwide, was identified in 12% of all samples. Twenty-one percent of the samples were of mixed genotypic origin, which is the highest frequency reported in any European population. The standard reverse transcription-PCR methods initially failed to identify a considerable fraction of the rotavirus P strains due to mutations at the VP4 primer-binding sites of P[8] strains. The application of a degenerate P[8] primer resulted in typing of most VP4 strains. There was considerable year-to-year variation among the circulating G-P types, and whereas G1P[8] was predominant in 1998 (42% of samples) and 2002 (26%), G2P[4] was the strain that was most frequently detected in 2000 (26% of samples). Our findings might implicate challenges for rotavirus vaccine implementation in a European population and underscore the importance of extensive strain surveillance prior to, during, and after introduction of any vaccine candidate.

Collaboration


Dive into the Anders Gorm Pedersen's collaboration.

Top Co-Authors

Avatar

Søren Brunak

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Lars Erik Larsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Pierre Baldi

University of California

View shared research outputs
Top Co-Authors

Avatar

Mariann Chriél

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Tina Struve

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ulrik Fahnøe

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper Eugen-Olsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jesper Larsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Magne Bisgaard

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge