Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders J. Hansen is active.

Publication


Featured researches published by Anders J. Hansen.


Current Biology | 2004

Long-term persistence of bacterial DNA

Anders J. Hansen; Regin Rønn; Tina B. Brand; Ian Barnes; Carsten Wiuf; David A. Gilichinsky; David L. Mitchell; Alan Cooper

The persistence of bacterial DNA over geological timespans remains a contentious issue. In direct contrast to in vitro based predictions, bacterial DNA and even culturable cells have been reported from various ancient specimens many million years (Ma) old [1–8]. As both ancient DNA studies and the revival of microorganisms are known to be susceptible to contamination [8–10], it is concerning that these results have not been independently replicated to confirm their authenticity. Furthermore, they show no obvious relationship between sample age, and either bacterial composition or DNA persistence, although bacteria are known to differ markedly in hardiness and resistance to DNA degradation [11]. We present the first study of DNA durability and degradation of a broad variety of bacteria preserved under optimal frozen conditions, using rigorous ancient DNA methods [8–10]. The results demonstrate that nonspore-forming gram-positive (GP) Actinobacteria are by far the most durable, out-surviving endosporeformers such as Bacillaceae and Clostridiaceae. The observed DNA degradation rates are close to theoretical calculations [9], indicating a limit of ca. 400 thousand years (kyr) beyond which PCR amplifications are prevented by the formation of DNA interstrand crosslinks (ICLs). The twelve permafrost samples (0-8.1 Ma) investigated were obtained from northeast Siberia and Beacon Valley, Antarctica. DNA preservation at these sites is exceptional due to constant subzero temperatures, largely neutral pH, and anaerobic conditions. Epifluorescence microscopy revealed ~107cells/gram wetweight in the bacterial size range. The cell counts are in agreement with previous results obtained on permafrost [2,3]. 16S rDNA sequences of 120 bp and 600 bp could be reproducibly amplified from samples up to 400–600 kyr, and show an inverse relationship between PCR amplification efficiency and fragment length that is typical of ancient DNA [8–10,12]. Controls for surface contamination during sampling were negative. Chimeric sequences were excluded from analysis, along with sequences that failed a bootstrap test for independent reproducibility [13]. DNA concentrations and taxonomic diversity were found to decrease with age until 400–600 kyr, at which point the percentage of templates with ICLs reached 100% (Figure 1A–C). Sequences from the older samples appear to be a subset of those from younger material, and all identified bacterial taxa are known soil inhabitants, indicating that permafrost is a nonextremophile environment. There were clear age-related patterns in taxon survival across geographically widespread samples (separated up to 1400 km). Sequences of non-sporeforming GP Actinobacteria, affiliated largely to the genus Arthrobacter (99–100% similarity), consistently persisted for the longest time, followed by GP endospore-forming Bacillaceae and Clostridiaceae and finally gram-negative (GN) bacteria, mostly Proteobacteria (Figure 1D).


American Journal of Human Genetics | 2003

The Genetic Origins of the Andaman Islanders

Phillip Endicott; M. Thomas P. Gilbert; Chris Stringer; Carles Lalueza-Fox; Anders J. Hansen; Alan Cooper

Mitochondrial sequences were retrieved from museum specimens of the enigmatic Andaman Islanders to analyze their evolutionary history. D-loop and protein-coding data reveal that phenotypic similarities with African pygmoid groups are convergent. Genetic and epigenetic data are interpreted as favoring the long-term isolation of the Andamanese, extensive population substructure, and/or two temporally distinct settlements. An early colonization featured populations bearing mtDNA lineage M2, and this lineage is hypothesized to represent the phylogenetic signal of an early southern movement of humans through Asia. The results demonstrate that Victorian anthropological collections can be used to study extinct, or seriously admixed populations, to provide new data about early human origins.


Genetics | 2005

Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

Jonas Binladen; Carsten Wiuf; M. Thomas P. Gilbert; Michael Bunce; Ross Barnett; Greger Larson; Alex D. Greenwood; James Haile; Simon Y. W. Ho; Anders J. Hansen

To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences.


Genetics | 2006

Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments

Anders J. Hansen; David L. Mitchell; Carsten Wiuf; Lakshmi Paniker; Tina B. Brand; Jonas Binladen; David A. Gilichinsky; Regin Rønn

Diagenesis was studied in DNA obtained from Siberian permafrost (permanently frozen soil) ranging from 10,000 to 400,000 years in age. Despite optimal preservation conditions, we found the sedimentary DNA to be severely modified by interstrand crosslinks; single- and double-stranded breaks; and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate ∼100 times faster than single-stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost sediments is to be significantly increased. Using the obtained rate constant for interstrand crosslinks the maximal survival time of amplifiable 120-bp fragments of bacterial 16S ribosomal DNA was estimated to be ∼400,000 years. Additionally, a clear relationship was found between DNA damage and sample age, contradicting previously raised concerns about the possible leaching of free DNA molecules between permafrost layers.


Applied and Environmental Microbiology | 2005

Beringian Paleoecology Inferred from Permafrost-Preserved Fungal DNA

Magnus C. Lydolph; Jonas Jacobsen; Peter Arctander; M. Thomas P. Gilbert; David A. Gilichinsky; Anders J. Hansen; Lene Lange

ABSTRACT The diversity of fungi in permanently frozen soil from northeastern Siberia was studied by culture-independent PCR amplification of diverse environmental 18S rRNA genes. Elaborate protocols to avoid contamination during drilling, sampling, and amplification were used. A broad diversity of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition in northeastern Siberia during this period. Interestingly, DNA sequences with high homology to sequences of coprophilic and keratinophilic fungi indicated that feces, hair, skin, and nails could have been sources of ancient megafauna DNA recently reported to be present in small amounts of Siberian permafrost sediments.


Philosophical Transactions of the Royal Society B | 2015

Ancient and modern environmental DNA.

Mikkel Winther Pedersen; Søren Overballe-Petersen; Luca Ermini; Clio Der Sarkissian; James Haile; Micaela Hellström; Johan Spens; Philip Francis Thomsen; Kristine Bohmann; Enrico Cappellini; Ida Bærholm Schnell; Nathan Wales; Christian Carøe; Paula F. Campos; Astrid M. Z. Schmidt; M. Thomas P. Gilbert; Anders J. Hansen; Ludovic Orlando

DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.


Current Biology | 2005

Bayesian Inference of the Metazoan Phylogeny: A Combined Molecular and Morphological Approach

Henrik Glenner; Anders J. Hansen; Martin V. Sørensen; Frederik Ronquist; John P. Huelsenbeck

Metazoan phylogeny remains one of evolutionary biologys major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has been the only feasible combined approach but is highly sensitive to long-branch attraction. Recent development of stochastic models for discrete morphological characters and computationally efficient methods for Bayesian inference has enabled combined molecular and morphological data analysis with rigorous statistical approaches less prone to such inconsistencies. We present the first statistically founded analysis of a metazoan data set based on a combination of morphological and molecular data and compare the results with a traditional parsimony analysis. Interestingly, the Bayesian analyses demonstrate a high degree of congruence between morphological and molecular data, and both data sets contribute to the result of the combined analysis. Additionally, they resolve several irregularities obtained in previous studies and show high credibility values for controversial groups such as the ecdysozoans and lophotrochozoans. Parsimony, on the contrary, shows conflicting results, with morphology being congruent to the Bayesian results and the molecular data set producing peculiarities that are largely reflected in the combined analysis.


BioTechniques | 2011

High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform.

Sarah L. Fordyce; María C. Ávila-Arcos; Eszter Rockenbauer; Claus Børsting; Rune Frank-Hansen; Frederik Torp Petersen; Anders J. Hansen; Niels Morling; M. Thomas P. Gilbert

The analysis and profiling of short tandem repeat (STR) loci is routinely used in forensic genetics. Current methods to investigate STR loci, including PCR-based standard fragment analyses and capillary electrophoresis, only provide amplicon lengths that are used to estimate the number of STR repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method in combination with a bioinformatic tool designed specifically to analyze sequence lengths and frequencies, we found that GS FLX STR sequence data are comparable to conventional capillary electrophoresis-based STR typing. Furthermore, we found DNA base substitutions and repeat sequence variations that would not have been identified using conventional STR typing.


Forensic Science International-genetics | 2008

Performance of the SNPforID 52 SNP-plex assay in paternity testing

Claus Børsting; Juan J. Sanchez; Hanna E. Hansen; Anders J. Hansen; Hanne Q. Bruun; Niels Morling

The performance of a multiplex assay with 52 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was tested on 124 mother-child-father trios. The typical paternity indices (PIs) were 10(5)-10(6) for the trios and 10(3)-10(4) for the child-father duos. Using the SNP profiles from the randomly selected trios and 700 previously typed individuals, a total of 83,096 comparisons between mother, child and an unrelated man were performed. On average, 9-10 mismatches per comparison were detected. Four mismatches were genetic inconsistencies and 5-6 mismatches were opposite homozygosities. In only two of the 83,096 comparisons did an unrelated man match perfectly to a mother-child duo, and in both cases the PI of the true father was much higher than the PI of the unrelated man. The trios were also typed for 15 short tandem repeats (STRs) and seven variable number of tandem repeats (VNTRs). The typical PIs based on 15 STRs or seven VNTRs were 5-50 times higher than the typical PIs based on 52 SNPs. Six mutations in tandem repeats were detected among the randomly selected trios. In contrast, there was not found any mutations in the SNP loci. The results showed that the 52 SNP-plex assay is a very useful alternative to currently used methods in relationship testing. The usefulness of SNP markers with low mutation rates in paternity and immigration casework is discussed.


Molecular Ecology | 2002

An exceptional case of historical outbreeding in African sable antelope populations

Christian Pitra; Anders J. Hansen; Dietmar Lieckfeldt; Peter Arctander

Empirical investigations of intraspecific outbreeding and subsequent introgressive hybridization in natural populations are rare, particularly among conspecific populations of large mammals. Using mitochondrial DNA data [partial control region (496 basepairs — bp) and cytochrome b gene (343 bp) sequences analysed from 95 individuals representing 17 sampling locations scattered through the African miombo (Brachystegia) woodland ecosystem] and phylogeographical statistical procedures (gene genealogy, nested cladistic and admixture proportion analyses), we (i) give a detailed dissection of the geographical genetic structure of Hippotragus niger; (ii) infer the processes and events potentially involved in the population history; and (iii) trace extensive introgressive hybridization in the species. The present‐day sable antelope population shows a tripartite pattern of genetic subdivision representing West Tanzanian, Kenya/East Tanzanian and Southern Africa locations. Nested clade analysis revealed that past allopatric fragmentation, caused probably by habitat discontinuities associated with the East African Rift Valley system, together with intermediary episodic long‐distance colonization and restricted, recurrent gene flow have played an predominant role in shaping the extent of maternal genetic diversity (10.4%) and population structure. An extensive (average rate of admixture = 20.0%), but geographically circumscribed and unidirectional hybridization event in the past was inferred, resulting in an extreme (the highest discovered so far in mammals) intraspecific difference of 18.2% among morphologically monotypic sable antelopes from West Tanzania. The results are used to provide an evolutionary framework within which taxonomic implications and conservation decisions can be evaluated.

Collaboration


Dive into the Anders J. Hansen's collaboration.

Top Co-Authors

Avatar

Niels Morling

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Tobias Mourier

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lasse Vinner

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Mollerup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge