Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders M. Dale is active.

Publication


Featured researches published by Anders M. Dale.


NeuroImage | 1999

Cortical surface-based analysis - I. Segmentation and surface reconstruction

Anders M. Dale; Bruce Fischl; Martin I. Sereno

Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging.


Neuron | 2002

Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain

Bruce Fischl; David H. Salat; Evelina Busa; Marilyn S. Albert; Megan E. Dieterich; Christian Haselgrove; Andre van der Kouwe; Ronald J. Killiany; David N. Kennedy; Shuna Klaveness; Albert Montillo; Nikos Makris; Bruce R. Rosen; Anders M. Dale

We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimers disease.


NeuroImage | 2006

An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

Rahul S. Desikan; Florent Ségonne; Bruce Fischl; Brian T. Quinn; Bradford C. Dickerson; Deborah Blacker; Randy L. Buckner; Anders M. Dale; R. Paul Maguire; Bradley T. Hyman; Marilyn S. Albert; Ronald J. Killiany

In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.


NeuroImage | 1999

Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System

Bruce Fischl; Martin I. Sereno; Anders M. Dale

The surface of the human cerebral cortex is a highly folded sheet with the majority of its surface area buried within folds. As such, it is a difficult domain for computational as well as visualization purposes. We have therefore designed a set of procedures for modifying the representation of the cortical surface to (i) inflate it so that activity buried inside sulci may be visualized, (ii) cut and flatten an entire hemisphere, and (iii) transform a hemisphere into a simple parameterizable surface such as a sphere for the purpose of establishing a surface-based coordinate system.


Human Brain Mapping | 1999

High-resolution intersubject averaging and a coordinate system for the cortical surface.

Bruce Fischl; Martin I. Sereno; Roger B. H. Tootell; Anders M. Dale

The neurons of the human cerebral cortex are arranged in a highly folded sheet, with the majority of the cortical surface area buried in folds. Cortical maps are typically arranged with a topography oriented parallel to the cortical surface. Despite this unambiguous sheetlike geometry, the most commonly used coordinate systems for localizing cortical features are based on 3‐D stereotaxic coordinates rather than on position relative to the 2‐D cortical sheet. In order to address the need for a more natural surface‐based coordinate system for the cortex, we have developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average. This establishes a spherical surface‐based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain. Hum. Brain Mapping 8:272–284, 1999.


Journal of Magnetic Resonance Imaging | 2008

The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods

Clifford R. Jack; Matt A. Bernstein; Nick C. Fox; Paul M. Thompson; Gene E. Alexander; Danielle Harvey; Bret Borowski; Paula J. Britson; Jennifer L. Whitwell; Chadwick P. Ward; Anders M. Dale; Joel P. Felmlee; Jeffrey L. Gunter; Derek L. G. Hill; Ronald J. Killiany; Norbert Schuff; Sabrina Fox-Bosetti; Chen Lin; Colin Studholme; Charles DeCarli; Gunnar Krueger; Heidi A. Ward; Gregory J. Metzger; Katherine T. Scott; Richard Philip Mallozzi; Daniel James Blezek; Joshua R. Levy; Josef Phillip Debbins; Adam S. Fleisher; Marilyn S. Albert

The Alzheimers Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimers disease. Magnetic resonance imaging (MRI), (18F)‐fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross‐linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1‐weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced‐scale clinical trial. The protocol selected for the ADNI study includes: back‐to‐back 3D magnetization prepared rapid gradient echo (MP‐RAGE) scans; B1‐calibration scans when applicable; and an axial proton density‐T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials. J. Magn. Reson. Imaging 2008.


Human Brain Mapping | 1999

Optimal experimental design for event-related fMRI

Anders M. Dale

An important challenge in the design and analysis of event‐related or single‐trial functional magnetic resonance imaging (fMRI) experiments is to optimize statistical efficiency, i.e., the accuracy with which the event‐related hemodynamic response to different stimuli can be estimated for a given amount of imaging time. Several studies have suggested that using a fixed inter‐stimulus‐interval (ISI) of at least 15 sec results in optimal statistical efficiency or power and that using shorter ISIs results in a severe loss of power. In contrast, recent studies have demonstrated the feasibility of using ISIs as short as 500 ms while still maintaining considerable efficiency or power. Here, we attempt to resolve this apparent contradiction by a quantitative analysis of the relative efficiency afforded by different event‐related experimental designs. This analysis shows that statistical efficiency falls off dramatically as the ISI gets sufficiently short, if the ISI is kept fixed for all trials. However, if the ISI is properly jittered or randomized from trial to trial, the efficiency improves monotonically with decreasing mean ISI. Importantly, the efficiency afforded by such variable ISI designs can be more than 10 times greater than that which can be achieved by fixed ISI designs. These results further demonstrate the feasibility of using identical experimental designs with fMRI and electro‐/magnetoencephalography (EEG/MEG) without sacrificing statistical power or efficiency of either technique, thereby facilitating comparison and integration across imaging modalities. Hum. Brain Mapping 8:109–114, 1999.


NeuroImage | 2004

A hybrid approach to the skull stripping problem in MRI.

Florent Ségonne; Anders M. Dale; Evelina Busa; Maureen Glessner; David H. Salat; Horst K. Hahn; Bruce Fischl

We present a novel skull-stripping algorithm based on a hybrid approach that combines watershed algorithms and deformable surface models. Our method takes advantage of the robustness of the former as well as the surface information available to the latter. The algorithm first localizes a single white matter voxel in a T1-weighted MRI image, and uses it to create a global minimum in the white matter before applying a watershed algorithm with a preflooding height. The watershed algorithm builds an initial estimate of the brain volume based on the three-dimensional connectivity of the white matter. This first step is robust, and performs well in the presence of intensity nonuniformities and noise, but may erode parts of the cortex that abut bright nonbrain structures such as the eye sockets, or may remove parts of the cerebellum. To correct these inaccuracies, a surface deformation process fits a smooth surface to the masked volume, allowing the incorporation of geometric constraints into the skullstripping procedure. A statistical atlas, generated from a set of accurately segmented brains, is used to validate and potentially correct the segmentation, and the MRI intensity values are locally re-estimated at the boundary of the brain. Finally, a high-resolution surface deformation is performed that accurately matches the outer boundary of the brain, resulting in a robust and automated procedure. Studies by our group and others outperform other publicly available skullstripping tools.


NeuroImage | 2004

Sequence-independent segmentation of magnetic resonance images

Bruce Fischl; David H. Salat; Andre van der Kouwe; Nikos Makris; Florent Ségonne; Brian T. Quinn; Anders M. Dale

We present a set of techniques for embedding the physics of the imaging process that generates a class of magnetic resonance images (MRIs) into a segmentation or registration algorithm. This results in substantial invariance to acquisition parameters, as the effect of these parameters on the contrast properties of various brain structures is explicitly modeled in the segmentation. In addition, the integration of image acquisition with tissue classification allows the derivation of sequences that are optimal for segmentation purposes. Another benefit of these procedures is the generation of probabilistic models of the intrinsic tissue parameters that cause MR contrast (e.g., T1, proton density, T2*), allowing access to these physiologically relevant parameters that may change with disease or demographic, resulting in nonmorphometric alterations in MR images that are otherwise difficult to detect. Finally, we also present a high band width multiecho FLASH pulse sequence that results in high signal-to-noise ratio with minimal image distortion due to B0 effects. This sequence has the added benefit of allowing the explicit estimation of T2* and of reducing test-retest intensity variability.


Neuron | 2000

Dynamic Statistical Parametric Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity

Anders M. Dale; Arthur K. Liu; Bruce Fischl; Randy L. Buckner; John W. Belliveau; Jeffrey D. Lewine; Eric Halgren

Functional magnetic resonance imaging (fMRI) can provide maps of brain activation with millimeter spatial resolution but is limited in its temporal resolution to the order of seconds. Here, we describe a technique that combines structural and functional MRI with magnetoencephalography (MEG) to obtain spatiotemporal maps of human brain activity with millisecond temporal resolution. This new technique was used to obtain dynamic statistical parametric maps of cortical activity during semantic processing of visually presented words. An initial wave of activity was found to spread rapidly from occipital visual cortex to temporal, parietal, and frontal areas within 185 ms, with a high degree of temporal overlap between different areas. Repetition effects were observed in many of the same areas following this initial wave of activation, providing evidence for the involvement of feedback mechanisms in repetition priming.

Collaboration


Dive into the Anders M. Dale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Halgren

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna Devor

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge