Anders Ödeen
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders Ödeen.
BMC Evolutionary Biology | 2013
Anders Ödeen; Olle Håstad
BackgroundColour vision in birds can be categorized into two classes, the ultraviolet (UVS) and violet sensitive (VS). Their phylogenetic distributions have traditionally been regarded as highly conserved. However, the complicated nature of acquiring spectral sensitivities from cone photoreceptors meant that until recently, only a few species had actually been studied. Whether birds are UVS or VS can nowadays be inferred from a wide range of species via genomic sequencing of the UV/violet SWS1 cone opsin gene.ResultsWe present genomic sequencing results of the SWS1 gene from 21 avian orders. Amino acid residues signifying UV sensitivity are found in the two most important spectral tuning sites 86 and 90 of Pteroclidiformes and Coraciiformes, in addition to the major clades, Palaeognathae, Charadriiformes, Trogoniformes, Psittaciformes and Passeriformes, where they where previously known to occur. We confirm that the presumed UVS-conferring amino acid combination F86, C90 and M93 is common to Palaeognathae and unique to this clade, despite available spectrometric evidence showing the ostrich retina to be VS.ConclusionsBy mapping our results together with data from previous studies on a molecular phylogeny we show that avian colour vision shifted between VS and UVS at least 14 times. Single nucleotide substitutions can explain all these shifts. The common ancestor of birds most likely had a VS phenotype. However, the ancestral state of the avian SWS1 opsin’s spectral tuning sites cannot be resolved, since the Palaeognathae are F86, C90 while the Neognathae are ancestrally S86, S90. The phylogenetic distribution of UVS and VS colour vision in birds is so complex that inferences of spectral sensitivities from closely related taxa should be used with caution.
BMC Evolutionary Biology | 2011
Anders Ödeen; Olle Håstad; Per Alström
BackgroundInterspecific variation in avian colour vision falls into two discrete classes: violet sensitive (VS) and ultraviolet sensitive (UVS). They are characterised by the spectral sensitivity of the most shortwave sensitive of the four single cones, the SWS1, which is seemingly under direct control of as little as one amino acid substitution in the cone opsin protein. Changes in spectral sensitivity of the SWS1 are ecologically important, as they affect the abilities of birds to accurately assess potential mates, find food and minimise visibility of social signals to predators. Still, available data have indicated that shifts between classes are rare, with only four to five independent acquisitions of UV sensitivity in avian evolution.ResultsWe have classified a large sample of passeriform species as VS or UVS from genomic DNA and mapped the evolution of this character on a passerine phylogeny inferred from published molecular sequence data. Sequencing a small gene fragment has allowed us to trace the trait changing from one stable state to another through the radiation of the passeriform birds. Their ancestor is hypothesised to be UVS. In the subsequent radiation, colour vision changed between UVS and VS at least eight times.ConclusionsThe phylogenetic distribution of SWS1 cone opsin types in Passeriformes reveals a much higher degree of complexity in avian colour vision evolution than what was previously indicated from the limited data available. Clades with variation in the colour vision system are nested among clades with a seemingly stable VS or UVS state, providing a rare opportunity to understand how an ecologically important trait under simple genetic control may co-evolve with, and be stabilised by, associated traits in a character complex.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2010
Anders Ödeen; Olle Håstad
Pollinating animals and their angiosperm hosts often show strong co-adaptation in traits that increase the likelihood of a successful transfer of pollen and nutrient rewards. One such adaptation is the reported colour difference caused by unequal distribution of anthocyanidin pigments amongst plant species visited by hummingbirds and passerines. This phenomenon has been suggested to reflect possible differences in the colour vision of these pollinating birds. The presence of any such difference in colour vision would arguably affect the ecological and evolutionary interactions between flowers and their visitors, accentuating differences in floral displays and attractiveness of plants to the favoured avian pollinators. We have tested for differences in colour vision, as indicated by the amino acid present at certain key positions in the short-wavelength-sensitive type 1 (SWS1) visual pigment opsin, between the major groups of pollinating birds: the non-passerine Trochilidae (hummingbirds), the passerine Meliphagidae (honeyeaters) and Nectariniidae (sunbirds) plus five other Passerida passerine families. The results reveal gross spectral sensitivity differences between hummingbirds and honeyeaters, on the one hand, and the Passerida species, on the other.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Anders Ödeen; Stephen Pruett-Jones; Amy Driskell; Jessica K. Armenta; Olle Håstad
Colour vision in diurnal birds falls into two discrete classes, signified by the spectral sensitivity of the violet- (VS) or ultraviolet-sensitive (UVS) short wavelength-sensitive type 1 (SWS1) single cone. Shifts between sensitivity classes are rare; three or four are believed to have happened in the course of avian evolution, one forming UVS higher passerines. Such shifts probably affect the expression of shortwave-dominated plumage signals. We have used genomic DNA sequencing to determine VS or UVS affinity in fairy-wrens and allies, Maluridae, a large passerine family basal to the known UVS taxa. We have also spectrophotometrically analysed male plumage coloration as perceived by the VS and UVS vision systems. Contrary to any other investigated avian genus, Malurus (fairy-wrens) contains species with amino acid residues typical of either VS or UVS cone opsins. Three bowerbird species (Ptilonorhynchidae) sequenced for outgroup comparison carry VS opsin genes. Phylogenetic reconstructions render one UVS gain followed by one or more losses as the most plausible evolutionary scenario. The evolution of avian ultraviolet sensitivity is hence more complex, as a single shift no longer explains its distribution in Passeriformes. Character correlation analysis proposes that UVS vision is associated with shortwave-reflecting plumage, which is widespread in Maluridae.
Biology Letters | 2005
Olle Håstad; Emma Ernstdotter; Anders Ödeen
Many fishes are sensitive to ultraviolet (UV) light and display UV markings during courtship. As UV scatters more than longer wavelengths of light, these signals are only effective at short distances, reducing the risk of detection by swimming predators. Such underwater scattering will be insignificant for dip and plunge diving birds, which prey on fishes just below the water surface. One could therefore expect to find adaptations in the eyes of dip and plunge diving birds that tune colour reception to UV signals. We used a molecular method to survey the colour vision tuning of five families of dip or plunge divers and compared the results with those from sister taxa of other foraging methods. We found evidence of extended UV vision only in gulls (Laridae). Based on available evidence, it is more probable that this trait is associated with their terrestrial foraging habits rather than piscivory.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2009
Anders Ödeen; Nathan S. Hart; Olle Håstad
Recently, in vitro mutation studies have made it possible to predict the wavelengths of maximum absorbance (λmax) of avian UV/violet sensitive visual pigments (SWS1) from the identity of a few key amino acid residues in the opsin gene. Given that the absorbance spectrum of a cone’s visual pigment and of its pigmented oil droplet can be predicted from just the λmax, it may become possible to predict the entire spectral sensitivity of a bird using genetic samples from live birds or museum specimens. However, whilst this concept is attractive, it must be validated to assess the reliability of the predictions of λmax from opsin amino acid sequences. In this paper, we have obtained partial sequences covering three of the known spectral tuning sites in the SWS1 opsin and predicted λmax of all bird species for which the spectral absorbance has been measured using microspectrophotometry. Our results validate the use of molecular data from genomic DNA to predict the gross differences in λmax between the violet- and ultraviolet-sensitive subtypes of SWS1 opsin. Additionally, we demonstrate that a bird, the bobolink Dolichonyx oryzivorus L., can have more than one SWS1 visual pigment in its retina.
The American Naturalist | 2008
Olle Håstad; Anders Ödeen
Only during the past decade have vision‐system‐neutral methods become common practice in studies of animal color signals. Consequently, much of the current knowledge on sexual selection is based directly or indirectly on human vision, which may or may not emphasize spectral information in a signal differently from the intended receiver. In an attempt to quantify this discrepancy, we used retinal models to test whether human and bird vision rank plumage colors similarly. Of 67 species, human and bird models disagreed in 26 as to which pair of patches in the plumage provides the strongest color contrast or which male in a random pair is the more colorful. These results were only partly attributable to human UV blindness. Despite confirming a strong correlation between avian and human color discrimination, we conclude that a significant proportion of the information in avian visual signals may be lost in translation.
Biology Letters | 2010
Anders Ödeen; Olle Håstad; Per Alström
Diurnal birds belong to one of two classes of colour vision. These are distinguished by the maximum absorbance wavelengths of the SWS1 visual pigment sensitive to violet (VS) and ultraviolet (UVS). Shifts between the classes have been rare events during avian evolution. Gulls (Laridae) are the only shorebirds (Charadriiformes) previously reported to have the UVS type of opsin, but too few species have been sampled to infer that gulls are unique among shorebirds or that Laridae is monomorphic for this trait. We have sequenced the SWS1 opsin gene in a broader sample of species. We confirm that cysteine in the key amino acid position 90, characteristic of the UVS class, has been conserved throughout gull evolution but also that the terns Anous minutus, A. tenuirostris and Gygis alba, and the skimmer Rynchops niger carry this trait. Terns, excluding Anous and Gygis, share the VS conferring serine in position 90 with other shorebirds but it is translated from a codon more similar to that found in UVS shorebirds. The most parsimonious interpretation of these findings, based on a molecular gene tree, is a single VS to UVS shift and a subsequent reversal in one lineage.
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES | 2000
Anders Ödeen; Ann-Britt Florin
Laboratory experiments designed to elucidate the mechanisms of sympatric and parapatric speciation may have been handicapped by too small population sizes, although this possibility has seldom been discussed. In this paper we review the published records of sympatric and parapatric speciation experiments to test the relative importance of selection intensity applied, duration of experiment and effective population size. Our results show that among these factors only effective population size has had a general effect on the generation of assortative mating. Reduced interbreeding is less likely to develop in small populations where the selection process often seems to have been opposed by inbreeding depression or loss of genetic variation. This study demonstrates that the experimental evidence frequently used as an argument against sympatric and parapatric speciation models is not as strong as previously believed.
The Journal of Experimental Biology | 2010
Diana Rubene; Olle Håstad; Ragnar Tauson; H. Wall; Anders Ödeen
SUMMARY The ability to perceive rapid movement is an essential adaptation in birds, which are involved in rapid flight, pursuing prey and escaping predators. Nevertheless, the temporal resolution of the avian visual systems has been less well explored than spectral sensitivity. There are indications that birds are superior to humans in their ability to detect movement, as suggested by higher critical flicker frequencies (CFFs). It has also been implied, but not properly tested, that properties of CFF, as a function of light intensity, are affected by the spectral composition of light. This study measured CFF in the chicken, Gallus gallus L., using four different light stimuli – white, full-spectrum (white with addition of UV), yellow (590 nm) and UV (400 nm) – and four light intensity levels, adjusted to relative cone sensitivity. The results showed significantly higher CFF values for full-spectrum compared with white light, as well as a steeper rate of increase with intensity. The presence of UV wavelengths, previously demonstrated to affect mate choice and foraging, appears to be important also for detection of rapid movement. The yellow and UV light stimuli yielded rather similar CFFs, indicating no special role for the double cone in flicker detection.